10070nam 2200433 450 991058331100332120230120002656.00-12-811181-X(CKB)3790000000543729(MiAaPQ)EBC5212768(PPN)268740887(EXLCZ)99379000000054372920180201h20182018 uy 0engurcnu||||||||rdacontentrdamediardacarrierMagnetic, ferroelectric, and multiferroic metal oxides /edited by Biljana D. StojanovićAmsterdam, Netherlands :Elsevier,2018.©20181 online resource (618 pages) illustrations (some color)Metal Oxides Series0-12-811180-1 Includes bibliographical references at the end of each chapters and index.Machine generated contents note:pt. IFerroelectric Metal Oxides --Section IFerroelectrics: Fundamentals --1.General view of ferroelectrics: Origin of ferroelectricity in metal oxide ferroelectrics and ferroelectric properties /Juras Banys --1.1.Introduction --1.2.Macroscopic phenomenological theory of ferroelectric phase transitions --1.3.Microscopic theory of ferroelectrics: the mean field --1.4.Dynamic properties of ferroelectrics: theory --1.5.Raman, infrared, and dielectric spectroscopy of ferroelectrics --1.6.Other spectroscopic techniques --1.7.The size and mechanical strain effect in ferroelectric ceramics and thin films --1.8.Summary --References --2.Perovskite and Aurivillius: Types of ferroelectric metal oxides /Jelena D. Bobic --2.1.Introduction --2.2.Perovskite structure --2.3.Aurivillius type of ferroelectric metal oxides --2.4.Summary --References --3.Lead-free perovskite ferroelectrics /Barbara Malic --3.1.Introduction --3.2.Alkaline niobates --3.3.Alkaline bismuth titanates --3.4.Barium titanate-based piezoelectrics --3.5.Conclusions --Acknowledgments --References --4.Perovskite layer-structured ferroelectrics /Idalci Cruvinel dos Reis --4.1.General overview --4.2.Physical properties --Acknowledgements --References --Section IIFerroelectric Metal Oxides: Synthesis and Deposition --5.Review of methods for powder-based processing /Jurij Koruza --5.1.Introduction --5.2.Solid-state synthesis of ferroelectric perovskites --5.3.Sintering of ferroelectric bulk ceramics --5.4.Thick films --Acknowledgements --References --6.Chemical synthesis and epitaxial growth methods for the preparation of ferroelectric ceramics and thin films /Maria A. Zaghete --6.1.Introduction --6.2.Chemical synthesis of ferroelectric ceramic powders --6.3.Epitaxial ferroelectric films: growth methods --6.4.Conclusion --Acknowledgments --References --7.Nanosized ferroelectrics: Preparation, properties, and applications /Maria A. Zaghete --7.1.Synthesis of nanostructured ferroelectrics --7.2.Piezoresponse force microscopy --7.3.Potential applications of nanosized ferroelectrics --7.4.Final considerations --Acknowledgments --References --8.Nanosized BaTiO3-based systems /Catalina-Andreea Stanciu --8.1.Fundamentals of undoped BaTiO3 systems --8.2.State of the art of nanosized BaTiO3-based systems --8.3.Recent approach to nanosized BaTiO3-based systems --8.4.Conclusions and trends --Acknowledgements --References --9.Ecological, lead-free ferroelectrics /Amador M. Gonzalez --9.1.Lead-free ferroelectrics --9.2.Preparation of lead-free piezoelectric ceramics with perovskite structure --9.3.Properties of lead-free piezoelectric ceramics --9.4.Future trends in the development of lead-free ferropiezoelectric ceramics --References --Section IIIFerroelectric Metal Oxides Application --10.Compositionally-graded ferroelectric ceramics and multilayers for electronic and sensing applications /Lucian Pintilie --10.1.Review of the current situation --10.2.Recent results --10.3.Conclusions and trends --References --11.Review of the most common relaxor ferroelectrics and their applications /Biljana D. Stojanovic --11.1.Introduction --11.2.Lead-based perovskite relaxors --11.3.Bismuth-layered perovskite relaxors --References --Further reading --12.Tunable ferroelectrics for frequency agile microwave and THz devices /Juan Hinojosa --12.1.Introduction --12.2.Techniques for measuring permittivity at microwave frequencies --12.3.Ferroelectrics at THz frequencies --References --13.Piezoelectric energy harvesting device based on quartz as a power generator /Carlos A. Fortulan --13.1.Introduction --13.2.Low-power piezoelectric EH generator --13.3.Process manufacturing and functional experiments of quartz EH --13.4.Conclusion --References --14.Nonvolatile memories /Carlos O. Paiva-Santos --14.1.Introduction --14.2.Nonvolatile memory device operation --14.3.Radio frequency-sputtered CaCu3Ti4O12 thin film --14.4.Spin-coated CaCu3Ti4O12 thin films --References --pt. IIMagnetic and Multiferroic Metal Oxides --Section IVMagnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics --15.Theory of ferrimagnetism and ferrimagnetic metal oxides /Chuanhu Wang --15.1.Introduction --15.2.Magnetic fields in materials --15.3.Magnetisms --15.4.Ferrites --15.5.Theoretical aspects of ferrimagnetism --15.6.Summary --References --16.Metal oxide structure, crystal chemistry, and magnetic properties /Srdjan Rakic --16.1.Magnetic elements/ions --16.2.Magnetic oxides --16.3.Magnetism of magnetic oxides --16.4.Representative structures of magnetic oxides --References --17.Review of methods for the preparation of magnetic metal oxides /Nikola I. Ilic --17.1.Introduction --17.2.Synthesis of metal magnetic oxides --17.3.Synthesis of multiferroic materials --17.4.Summary --References --18.Ferrite-based composites for microwave absorbing applications /Chuanhu Wang --18.1.Introduction --18.2.Theoretic considerations --18.3.Barium ferrite composites --18.4.Concluding remarks --References --19.Soft ferrite applications /Goran Radosavljevic --19.1.Characterization of ferrite material --19.2.Passive ferrite components --19.3.Ferrite sensors --19.4.Conclusion --References --20.Biomedical applications /Dusanka S. Mandic --20.1.Introduction --20.2.Biomedical applications of magnetic oxides --References --Section VMultiferroics: Fundamentals --21.Ferroelectric perovskite -- spinel ferrite ceramics /Liliana Mitoseriu --21.1.Introduction --21.2.Ceramic composites of Nb-doped Pb(Zr, Ti)O3 with MnFe2O4 --21.3.Nb-doped Pb(Zr, Ti)O3-ferrite composites prepared by in situ sol-gel combustion method --21.4.Conclusions --Acknowledgments --References --22.Single-phase, composite and laminate multiferroics /Antonio Feteira --22.1.Introduction --22.2.Single-phase multiferroics --22.3.Magnetoelectric multiferroic composites --22.4.Final remarks --References --Section VIMultiferroic Metal Oxides: Properties and Applications --23.Single and heterostructure multiferroic thin films /Antoine Barbier --23.1.Introduction --23.2.Elements of thin-film growth: Thin films versus multiferroics --23.3.Pertinence of multiferroic thin films: Multiferroics versus thin films --23.4.Conclusion --References --24.BiFeO3 ceramics and thick films: Processing issues and electromechanical properties /Andreja Bencan --24.1.Processing issues --24.2.Polarization switching, piezoelectricity, and local electrical conductivity --Acknowledgments --References --25.Properties of single multiferroics: Complex transition metal oxides /Biljana D. Stojanovic --25.1.Introduction --25.2.Classification of single multiferroics --25.3.A-site driven ferroelectricity multiferroics --25.4.Geometrically driven ferroelectricity multiferroics --25.5.Charge ordering driven ferroelectricity multiferroics --25.6.Type I multiferroics with complex or unknown origin of ferroelectricity --25.7.Magnetically driven ferroelectrics: Type II multiferroics --25.8.Conclusion --References --26.Bulk composite multiferroics: BaTi03-ferrites /Biljana D. Stojanovic --26.1.Preparation procedures of bulk multiferroics --26.2.Ferroelectric-dependent electrical properties of the multiferroics --26.3.Ferrite-dependent magnetic properties of multiferroics --References --27.Complex composites: Polymer matrix-ferroics or multiferroics /Mirjana M. Vijatovic Petrovic --27.1.Summary --References --28.Ferroelectric, ferromagnetic, and multiferroic heterostructures for possible applications as tunnel junctions /Ashok Kumar --28.1.Introduction --28.2.Ferroelectric nonvolatile memories --28.3.Ferroelectric tunnel junctions --28.4.Critical thickness for the existence of ferroelectricity --28.5.Magnetic tunnel junctions --28.6.Multiferroic tunnel junctions --28.7.Multiferroic heterostructure-based tunnel junctions --28.8.Tunneling electroresistance for the realization of nondestructive ferroelectric polarization readout --28.9.Advantages of band excitation over single frequency excitation piezoresponse force microscopy --28.10.Summary and outlook --References.Metallic oxidesIron oxidesMetallic oxides.Iron oxides.549.5Stojanović Biljana D.MiAaPQMiAaPQMiAaPQBOOK9910583311003321Magnetic, ferroelectric, and multiferroic metal oxides2030966UNINA