04031nam 2200433 450 991058309750332120230120002630.00-444-63747-80-444-63739-7(CKB)3710000001442222(MiAaPQ)EBC4901159(EXLCZ)99371000000144222220170728h20172017 uy 0engurcnu||||||||rdacontentrdamediardacarrierNanolayer research methodology and technology for green chemistry /Toyoko ImaeAmsterdam, Netherlands :Elsevier,2017.1 online resource (410 pages) color illustrationsElectronic version: Imae, Toyoko, 1942- Nanolayer research. Amsterdam : Elsevier, c2017 9780444637475 (OCoLC)993448112 Includes bibliographical references at the end of each chapters and index.Chapter 1: Overview of Nanolayers: Formulation and Characterization Methods; 1.1. Introduction; 1.2. Formulation of Nanolayers; 1.2.1. Monolayers at Interface; 1.2.1.1. Monolayer at gas (air)-liquid interface; 1.2.1.2. Monolayer at gas-solid interface; 1.2.1.3. Monolayer at liquid-solid interface; 1.2.1.4. Monolayer at finite interface; 1.2.2. Multilayers at Interface; 1.3. Characterization Methods of Nanolayers; 1.3.1. Characterization of Nanolayers by Microscopy1.3.1.1. Transmission electron microscope1.3.1.2. Atomic force microscope; 1.3.2. Characterization of Nanolayers by Electromagnetics; 1.3.2.1. Light scattering; 1.3.2.2. Small angle scattering; 1.3.2.3. Reflectometry; 1.3.3. Characterization of Nanolayers by Spectroscopy; 1.3.3.1. X-ray spectroscopy; 1.3.3.2. Vibration spectroscopy; 1.3.3.3. Surface plasmon resonance spectroscopy; 1.4. Conclusions; Acknowledgments; References; Chapter 2: Electrical Double Layer at Nanolayer Interface; 2.1. Introduction; 2.2. Gouy-Chapman-Stern Model for Electrical Double Layer2.3. Electrical Double Layer Around a Planar Surface2.4. Electrical Double Layer Around Spherical and Cylindrical Surfaces; 2.4.1. Spherical Surface; 2.4.2. Cylindrical Surface; 2.5. Electrical Double Layer Across a Nanolayer of Porous Material; 2.6. Electrical Double Layer Across a Nanolayer of Polyelectrolytes; 2.7. Discrete Charge Effect; 2.8. Modified Poisson-Boltzmann Equation; 2.9. Conclusion; References; Chapter 3: Scanning Probe Microscopy Techniques for Modern Nanomaterials; 3.1. Introduction; 3.2. Submolecular Imaging of Two-Dimensional Supramolecular Systems by SPM3.3. On-Site STM Imaging of Covalently Bonded 2D Supramolecular Structures by Surface-Mediated Selective Polycondensation3.4. Surface Characterization of 2D Nanomaterials by AFM and KPFM; 3.5. Characterizations of Advanced Materials for Polymer Electrolyte Fuel Cells by SPM Techniques; 3.6. Recent Thin Film Organic and/or Inorganic Solar Cells; 3.7. KPFM for Determination of the Work Function in Solar Cells; 3.8. Morphology and Work Function Distribution of Bulk Heterojunction Solar Cells; 3.9. Local Photovoltaic Characteristics of Bulk Heterojunction Solar Cells3.10. Local Photovoltaic Inorganic and Organic/Inorganic Hybrid Solar Cells3.11. Conclusions and Outlook; References; Chapter 4: Surface-Enhanced Spectroscopy for Surface Characterization; 4.1. Introduction; 4.2. Types of Surface-Enhanced Spectroscopies; 4.3. Metallic Nanostructures for Surface Enhanced Spectroscopies; 4.4. Physicochemical Phenomenon of Materials in the Vicinity of Metal Nanostructures; 4.5. Practical Methods for Surface-Enhanced Spectroscopies; 4.6. Recent Applications: Beyond the Spectroscopies; 4.7. Conclusions; ReferencesGreen chemistryGreen chemistry.660Imae Toyoko1942-521339MiAaPQMiAaPQMiAaPQBOOK9910583097503321Nanolayer research1946720UNINA