03858 am 2200769 n 450 9910571797303321202107082-7351-2570-X10.4000/books.editionsmsh.34095(CKB)5700000000086917(FrMaCLE)OB-editionsmsh-34095(oapen)https://directory.doabooks.org/handle/20.500.12854/91818(PPN)263270181(EXLCZ)99570000000008691720220530j|||||||| ||| 0freuu||||||m||||txtrdacontentcrdamediacrrdacarrierCastellu (Haute-Corse) Un établissement rural de l’Antiquité tardive : fouilles récentes (1981-1985) /Philippe Pergola, Cinzia VismaraParis Éditions de la Maison des sciences de l’homme20211 online resource (192 p.) Documents d’archéologie française2-7351-0293-9 La publication collective des touilles de Castellu renouvelle totalement l’image de la Corse de l’Antiquité tardive et du Haut Moyen Age. L’étude du matériel exhumé, en majorité du VIe s., et celle de la faune, qui se distingue nettement par les races de la faune de l’âge du Fer et témoigne de pratiques alimentaires différentes, mettent en évidence l’importance et le caractère durable de la romanisation dans la Corse de l’intérieur et la persistance des échanges avec le reste du bas­sin méditerranéen en dépit de l’invasion vandale. Cet ouvrage est donc un premier et remarquable pas vers une approche nouvelle de cette période de l’histoire corse. The publication of excavations at Castellu throws an entirely new light upon late-Roman and early-medieval Corsica. The study includes an examination of the finds, most of which are of 6th century date, and an analysis of the faunal remains. The latter shows not only that domesticated species differed from those of the Iron-Age but also that eating habits had changed. The resulting picture is one of significant and long-lasting Romanisation of innerCorsica, and of ongoing trade relations with the rest of the Mediterranean region, even after the Van­dal invasion. The publication marks a major step towards a new understanding of this period of Corsican history.Castellu Excavations (Archaeology)FranceCorte RegionRomansFranceCorte RegionCastellu Site (France)Corte Region (France)Antiquities, RomanmonnaiecéramiqueAntiquitémétalmobilierrestaurationconservationargileCastelluTavignanoHaute-CorseExcavations (Archaeology)RomansAntomarchi Catherine1283025Brenot Claude734355Carignani Andrea474941Cocchini Fabrizia1283026Février Paul‑Albert1283027Levy J778949Maria Loreti Ersilia1283028Marlnval‑Vigne Marie‑Christine1283029Martorelli Rosana1283030Martorelli Rossana776748Pacetti F1283031Pentiricci M1283032Pergola Philippe170760Ruas Marie‑Pierre1283033Vigne Jean‑Denis1283034Vismara Cinzia168277Pergola Philippe170760Vismara Cinzia168277FR-FrMaCLEBOOK9910571797303321Castellu (Haute-Corse)3018912UNINA00995nam0 22002771i 450 UON0007942320231205102423.59120020107d1985 |0itac50 baaraCY|||| |||||Fuqaha' al-zalamSalim BarakatNiqusiyaBisan Bris1985204 p.24 cm001UON000673362001 Kitab al-karmal2ROMANZI PALESTINESIUONC018634FINicosiaUONL001030892.736Narrativa araba - Periodo moderno (1945- )21BARAKATSalimUONV041459479943Bisan BrisUONV257406650ITSOL20250620RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00079423SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI VI C a x 164 SI AA 13616 5 164 Fuqaha' al-zalam1301317UNIOR12754nam 22006133 450 991058307320332120250505152556.0978152311291315231129139781569906699156990669697815699066821569906688(CKB)4100000000305229(MiAaPQ)EBC6010369(MiAaPQ)EBC31508358(Au-PeEL)EBL31508358(OCoLC)1443935730(EXLCZ)99410000000030522920250505d2017 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierDesigning plastic parts for assembly /Paul A. TresEighth edition updated.Munich :Hanser Publishers ;Cincinnati :Hanser Publications,[2017]©20171 online resource IllustrationsOnline version: Tres, Paul A., author. Designing plastic parts for assembly 8th edition updated. Munich : Hanser Publishers ; Cincinnati : Hanser Publications, [2017] 9781569906699 (DLC) 2017016816 Includes bibliographical references and index.Intro -- Contents -- Foreword to the Eighth Edition -- Preface to the Eighth Edition -- Foreword to the First Edition -- Preface to the First Edition -- Acknowledgments -- 1 Understanding Plastic Materials -- 1.1 Basic Resins -- 1.1.1 Thermoplastics -- 1.1.2 Thermosets -- 1.2 Basic Structures -- 1.2.1 Crystalline -- 1.2.2 Amorphous -- 1.2.3 Liquid Crystal Polymer (LCP) -- 1.2.4 New Polymer Technologies -- 1.2.4.1 Inherently Conductive Polymers (ICP) -- 1.2.4.2 Electro-Optic Polymers (EOP) -- 1.2.4.3 Biopolymers -- 1.3 Homopolymer vs. Copolymer -- 1.4 Reinforcements -- 1.5 Fillers -- 1.5.1 Glass Spheres -- 1.5.1.1 Microsphere Properties -- 1.5.1.2 Compounding -- 1.5.1.3 Injection Molding -- 1.5.1.4 Mechanical Properties in Injection-Molded Thermoplastic Applications -- 1.6 Additives -- 1.7 Physical Properties -- 1.7.1 Density and Specific Gravity -- 1.7.2 Elasticity -- 1.7.2.1 Case History: Elasticity and Denier -- 1.7.3 Plasticity -- 1.7.4 Ductility -- 1.7.5 Toughness -- 1.7.6 Brittleness -- 1.7.7 Notch Sensitivity -- 1.7.8 Isotropy -- 1.7.9 Anisotropy -- 1.7.10 Water Absorption -- 1.7.11 Mold Shrinkage -- 1.8 Mechanical Properties -- 1.8.1 Normal Stress -- 1.8.2 Normal Strain -- 1.8.3 Stress-Strain Curve -- 1.9 Creep -- 1.9.1 Introduction -- 1.9.2 Creep Experiments -- 1.9.3 Creep Curves -- 1.9.4 Stress-Relaxation -- 1.10 Impact Properties -- 1.11 Thermal Properties -- 1.11.1 Melting Point -- 1.11.2 Glass Transition Temperature -- 1.11.3 Heat Deflection Temperature -- 1.11.4 Coefficient of Thermal Expansion -- 1.11.5 Thermal Conductivity -- 1.11.6 Thermal Influence on Mechanical Properties -- 1.11.7 Case History: Planetary Gear Life Durability -- 2 Understanding Safety Factors -- 2.1 What Is a Safety Factor -- 2.2 Using the Safety Factors -- 2.2.1 Design Safety Factors -- 2.2.1.1 Design Static Safety Factor -- 2.2.1.2 Design Dynamic Safety Factor.2.2.1.3 Design Time-Related Safety Factor -- 2.2.2 Material Properties Safety Factor -- 2.2.3 Processing Safety Factors -- 2.2.4 Operating Condition Safety Factor -- 3 Strength of Material for Plastics -- 3.1 Tensile Strength -- 3.1.1 Proportional Limit -- 3.1.2 Elastic Stress Limit -- 3.1.3 Yield Stress -- 3.1.4 Ultimate Stress -- 3.2 Compressive Stress -- 3.3 Shear Stress -- 3.4 Torsion Stress -- 3.5 Elongations -- 3.5.1 Tensile Strain -- 3.5.2 Compressive Strain -- 3.5.3 Shear Strain -- 3.6 True Stress and Strain vs. Engineering Stress and Strain -- 3.7 Poisson's Ratio -- 3.8 Modulus of Elasticity -- 3.8.1 Young's Modulus -- 3.8.2 Tangent Modulus -- 3.8.3 Secant Modulus -- 3.8.4 Creep (Apparent) Modulus -- 3.8.5 Shear Modulus -- 3.8.6 Flexural Modulus -- 3.8.7 The Use of Various Moduli -- 3.9 Stress Relations -- 3.9.1 Introduction -- 3.9.2 Experiment -- 3.9.3 Equivalent Stress -- 3.9.4 Maximum Normal Stress -- 3.9.5 Maximum Normal Strain -- 3.9.6 Maximum Shear Stress -- 3.9.7 Maximum Deformation Energy -- 3.10 ABCs of Plastic Part Design -- 3.10.1 Constant Wall -- 3.10.2 Fillets -- 3.10.3 Boss Design -- 3.10.4 Rib Design -- 3.10.5 Case History: Ribs -- 3.11 Conclusions -- 4 Nonlinear Considerations -- 4.1 Material Considerations -- 4.1.1 Linear Material -- 4.1.2 Nonlinear Materials -- 4.2 Geometry -- 4.2.1 Linear Geometry -- 4.2.2 Nonlinear Geometry -- 4.3 Finite Element Analysis (FEA) -- 4.3.1 FEA Method Application -- 4.3.2 Using FEA Method -- 4.3.3 Most Common FEA Codes -- 4.4 Conclusions -- 5 Welding Techniques for Plastics -- 5.1 Ultrasonic Welding -- 5.1.1 Ultrasonic Equipment -- 5.1.2 Horn Design -- 5.1.3 Ultrasonic Welding Techniques -- 5.1.4 Control Methods -- 5.1.4.1 Common Issues with Welding -- 5.1.4.2 Joint Design -- 5.1.4.3 Butt Joint Design -- 5.1.4.4 Shear Joint Design -- 5.1.4.5 Torsional Ultrasonic Welding.5.1.4.6 Case History: Welding Dissimilar Polymers -- 5.2 Ultrasonic (Heat) Staking -- 5.2.1 Standard Stake Design -- 5.2.2 Flush Stake Design -- 5.2.3 Spherical Stake Design -- 5.2.4 Hollow (Boss) Stake Design -- 5.2.5 Knurled Stake Design -- 5.3 Ultrasonic Spot Welding -- 5.4 Ultrasonic Swaging -- 5.5 Ultrasonic Stud Welding -- 5.6 Spin Welding -- 5.6.1 Process -- 5.6.2 Equipment -- 5.6.3 Welding Parameters -- 5.6.4 Joint Design -- 5.7 Hot Plate Welding -- 5.7.1 Process -- 5.7.2 Joint Design -- 5.8 Vibration Welding -- 5.8.1 Process -- 5.8.2 Equipment -- 5.8.3 Joint Design -- 5.8.4 Common Issues with Vibration Welding -- 5.9 Electromagnetic Welding -- 5.9.1 Equipment -- 5.9.2 Process -- 5.9.3 Joint Design -- 5.10 Radio Frequency (RF) Welding -- 5.10.1 Equipment -- 5.10.2 Process -- 5.11 Laser Welding -- 5.11.1 Equipment -- 5.11.2 Process -- 5.11.3 Noncontact Welding -- 5.11.4 Transmission Welding -- 5.11.5 Intermediate Film &amp -- ClearWeld™ Welding -- 5.11.6 Polymers -- 5.11.7 Applications -- 5.12 Conclusion -- 6 Press Fitting -- 6.1 Introduction -- 6.2 Definitions and Notations -- 6.3 Geometric Definitions -- 6.4 Safety Factors -- 6.5 Creep -- 6.6 Loads -- 6.7 Press Fit Theory -- 6.8 Design Algorithm -- 6.9 Case History: Plastic Shaft and Plastic Hub -- 6.9.1 Shaft and Hub Made of Different Polymers -- 6.9.2 Safety Factor Selection -- 6.9.3 Material Properties -- 6.9.4 Shaft Material Properties at 23°C -- 6.9.4.1 Shaft Material Properties at 93°C -- 6.9.4.2 Creep Curves at 23°C -- 6.9.4.3 Creep at 93°C -- 6.9.4.4 Pulley at 23°C -- 6.9.4.5 Pulley at 93°C -- 6.9.4.6 Creep, Pulley at 23°C -- 6.9.4.7 Creep, Pulley at 93°C -- 6.10 Solutions: Plastic Shaft, Plastic Hub -- 6.10.1 Case A -- 6.10.2 Case B -- 6.10.3 Case C -- 6.10.4 Case D -- 6.11 Case History: Metal Ball Bearing and Plastic Hub -- 6.11.1 Fusible Core Injection Molding.6.11.2 Upper Intake Manifold Background -- 6.11.3 Design Algorithm -- 6.11.4 Material Properties -- 6.11.4.1 CAMPUS -- 6.11.5 Solution -- 6.11.5.1 Necessary IF at Ambient Temperature -- 6.11.5.2 IF Available at 118°C -- 6.11.5.3 IF Verification at -40°C -- 6.11.5.4 Verification of Stress Level at -40°C, Time = 0 -- 6.11.5.5 Stress Level at -40°C, Time = 5,000 h -- 6.11.5.6 Stress Level at 23°C, Time = 5,000 h -- 6.11.5.7 Stress Level at 118°C, Time = 5,000 h -- 6.12 Successful Press Fits -- 6.13 Conclusion -- 7 Living Hinges -- 7.1 Introduction -- 7.2 Classic Design for PP and PE -- 7.3 Common Living Hinge Design -- 7.4 Basic Design for Engineering Plastics -- 7.5 Living Hinge Design Analysis -- 7.5.1 Elastic Strain Due to Bending -- 7.5.1.1 Assumptions -- 7.5.1.2 Geometric Conditions -- 7.5.1.3 Strain Due to Bending -- 7.5.1.4 Stress Due to Bending -- 7.5.1.5 Closing Angle of the Hinge -- 7.5.1.6 Bending Radius of the Hinge -- 7.5.2 Plastic Strain Due to Pure Bending -- 7.5.2.1 Assumptions -- 7.5.2.2 Strain Due to Bending -- 7.5.3 Plastic Strain Due to a Mixture of Bending and Tension -- 7.5.3.1 Tension Strain -- 7.5.3.2 Bending Strain -- 7.5.3.3 Neutral Axis Position -- 7.5.3.4 Hinge Length -- 7.5.3.5 Elastic Portion of the Hinge Thickness -- 7.6 Computer Flow Chart -- 7.6.1 Computer Notations -- 7.7 Computer Flow Chart Equations -- 7.8 Example: Case History -- 7.8.1 World-Class Connector -- 7.8.1.1 Calculations for the "Right Way" Assembly -- 7.8.1.2 Calculations for the "Wrong Way" Assembly -- 7.8.2 Comparison Material -- 7.8.2.1 "Right Way" Assembly -- 7.8.2.2 "Wrong Way" Assembly -- 7.8.3 Ignition Cable Bracket -- 7.8.3.1 Initial Design -- 7.8.3.2 Improved Design -- 7.9 Processing Errors for Living Hinges -- 7.10 Coined Hinges -- 7.11 Oil-Can Designs -- 7.12 Conclusion -- 7.13 Exercise -- 8 Snap Fitting -- 8.1 Introduction.8.2 Material Considerations -- 8.3 Design Considerations -- 8.3.1 Safety Factors -- 8.4 Snap Fit Theory -- 8.4.1 Notations -- 8.4.2 Geometric Conditions -- 8.4.3 Stress/Strain Curve and Formulae -- 8.4.4 Instantaneous Moment of Inertia -- 8.4.5 Angle of Deflection -- 8.4.6 Integral Solution -- 8.4.7 Equation of Deflection -- 8.4.8 Integral Solution -- 8.4.9 Maximum Deflection -- 8.4.10 Self-Locking Angle -- 8.5 Case History: One-Way Continuous Beam with Rectangular Cross Section -- 8.5.1 Geometrical Model -- 8.6 Annular Snap Fits -- 8.6.1 Case History: Annular Snap Fit, Rigid Beam with Soft Mating Part -- 8.6.2 Notations -- 8.6.3 Geometric Definitions -- 8.6.4 Material Selections and Properties -- 8.6.5 Basic Formulas -- 8.6.6 Angle of Assembly -- 8.6.7 Case History: Digital Wristwatch -- 8.7 Torsional Snap Fits -- 8.7.1 Notations -- 8.7.2 Basic Formulae -- 8.7.3 Material Properties -- 8.7.4 Solution -- 8.8 Case History: Injection Blow Molded Bottle Assembly -- 8.9 Tooling -- 8.10 Case History: Snap Fits That Kill -- 8.11 Assembly Procedures -- 8.12 Issues with Snap Fitting -- 8.13 Serviceability -- 8.14 Exercise -- 8.14.1 Solution -- 8.15 Conclusions -- 9 Bonding -- 9.1 Failure Theories -- 9.2 Surface Energy -- 9.3 Surface Treatment -- 9.4 Types of Adhesives -- 9.5 Advantages and Limitations of Adhesives -- 9.6 Stress Cracking in Bonded Joints of Adhesives -- 9.7 Joint Design -- 9.8 Conclusion -- 10 In-Mold Assembly -- 10.1 Overmolding -- 10.2 In-Mold Assembly -- 10.3 Joint Design -- 10.4 Tool Design -- 10.5 Case Histories: Automotive IMA -- 10.6 Conclusion -- 11 Fasteners -- 11.1 Thread Forming -- 11.2 Case History: Automotive Undercarriage Splash Shield -- 11.3 Thread Cutting -- 11.4 Conclusion -- Appendix A: Enforced Displacement -- Appendix B: Point Force -- Appendix C: Molding Process Data Record -- Appendix D: Tool Repair &amp.Inspection Record."Designing Plastic Parts for Assembly" provides an excellent tool for both seasoned part designers and novices to the field, facilitating cost effective design decisions and ensuring that the plastic parts and products will stand up under use. The detailed yet simplified discussion of material selection, manufacturing techniques, and assembly procedures will enable the reader to evaluate plastic materials and to adequately design plastic parts for assembly. The book describes good joint design and implementation, the geometry and nature of the component parts, the types of load involved, and other basic information necessary in order to work successfully in this field. Throughout, the treatment is practice-oriented and focused on everyday problems and situations. The 7th edition introduces a completely new chapter on overmolding and in-mold assembly, as well as a new chapter on bonding, including accompanying examples. Laser molding and ultrasonics coverage are also brought up to date, with illustrative case histories. Contents: - Understanding Plastic Materials - Understanding Safety Factors - Strength of Materials for Plastics - Nonlinear Considerations - Assembly Techniques for Plastics - Press Fitting - Living Hinges - Snap Fitting - Bonding - In-Mold AssemblyPlasticsMoldingMachine partsEngineering designPlasticsMolding.Machine parts.Engineering design.668.4Tres Paul A.975692MiAaPQMiAaPQMiAaPQBOOK9910583073203321Designing plastic parts for assembly2221814UNINA