10953nam 2200553 450 991058301280332120230120002819.00-12-813757-6(CKB)4100000007101029(MiAaPQ)EBC5568842(Au-PeEL)EBL5568842(OCoLC)1059577065(EXLCZ)99410000000710102920181122d2019 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierApplications of nanocomposite materials in orthopedics /edited by Inamuddin, Abdullah M. Asiri, Ali MohammadDuxford, United Kingdom :Woodhead Publishing, an imprint of Elsevier,[2019]©20191 online resource (332 pages)Woodhead Publishing series in biomaterials0-12-813740-1 Front Cover -- Applications of Nanocomposite Materials in Orthopedics -- Copyright -- Contents -- List of contributors -- Preface -- 1: Biodegradable polymer matrix nanocomposites for bone tissue engineering -- 1.1 Introduction -- 1.2 Tissue engineering -- 1.3 Bone tissue engineering -- 1.4 Biodegradable polymers used in the design of nanocomposites for bone tissue engineering -- 1.4.1 Natural biodegradable polymers -- 1.4.1.1 Chitosan -- 1.4.1.2 Alginates -- 1.4.1.3 Starches -- 1.4.1.4 Cellulose -- 1.4.1.5 Collagen -- 1.4.1.6 Gelatin -- 1.4.1.7 Hyaluronic acid (HA) -- 1.4.1.8 Dextran -- 1.4.2 Synthetic biodegradable polymers -- 1.4.2.1 Polylactic acid (PLA) -- 1.4.2.2 Poly(lactic-co-glycolic acid) (PLGA) -- 1.4.2.3 Poly(propylene fumarate) (PPF) -- 1.4.2.4 Poly(ε-caprolactone) (PCL) -- 1.5 Conclusion -- References -- 2: Electrospun hydrogels composites for bone tissue engineering -- 2.1 Introduction -- 2.1.1 General principles of electrospinning -- 2.2 Electrospun nanocomposites for medical applications -- 2.2.1 Electrospun nanocomposite for bone tissues regeneration via osteoconduction, osteoinduction, and osteogenesis -- 2.2.1.1 The effect of osteogenesis and osteoinduction on osteoconductive electrospun scaffolds -- 2.3 Electrospun biomaterials for bone tissue engineering -- 2.3.1 Electrospun nanofiber-reinforced hydrogels -- 2.3.2 Electrospun hydrogels with biological electrospray cells -- 2.3.3 Electrospun hydrogels with antimicrobial activity -- 2.4 Impact of various parameters on the electrospinning process for nanofiber morphology -- 2.4.1 Polymer solution parameters -- 2.4.2 Processing parameters -- 2.4.3 Ambient parameters -- 2.5 Inventions related to electrospun hydrogels for bone tissue engineering -- 2.6 Future applications of electrospun hydrogels -- 2.7 Conclusion -- References -- Further Reading.3: Fabrication and applications of hydroxyapatite-based nanocomposites coating for bone tissue engineering -- 3.1 Introduction -- 3.2 Hydroxyapatite: Structure and properties -- 3.3 Conventional orthopedic implants -- 3.3.1 Metallic implants -- 3.3.2 Nonmetallic implants -- 3.4 Composites of hydroxyapatite with ceramics -- 3.4.1 Hydroxyapatite-Al2O3 composites -- 3.4.2 Hydroxyapatite-glass nanocomposites -- 3.4.3 Hydroxyapatite-mullite composites -- 3.4.4 Hydroxyapatite-YSZ nanocomposites -- 3.5 Composites of hydroxyapatite with metals -- 3.5.1 Hydroxyapatite-Pt nanocomposites -- 3.5.2 Hydroxyapatite-Ti nanocomposites -- 3.6 Composites of hydroxyapatite with polymers -- 3.6.1 Hydroxyapatite-epoxy composites -- 3.6.2 Hydroxyapatite-PVA nanocomposites -- 3.6.3 Hydroxyapatite-polyamide nanocomposites -- 3.6.4 Hydroxyapatite-PMMA composites -- 3.6.5 Hydroxyapatite-polylactide composites -- 3.6.6 Hydroxyapatite-PS composites -- 3.6.7 Hydroxyapatite-PE nanocomposites -- 3.6.8 Hydroxyapatite-collagen nanocomposites -- 3.6.9 Hydroxyapatite-PEEK nanocomposites -- 3.7 Conclusion -- References -- 4: Magnesium-based alloys and nanocomposites for biomedical application -- 4.1 Introduction -- 4.2 Magnesium-based biomaterials -- 4.2.1 Why magnesium and magnesium alloys? -- 4.2.2 Corrosion behavior of medical implants -- 4.2.2.1 Magnesium-Corrosion mechanism -- 4.2.3 Current research to overcome the challenges in Mg-based biomaterials -- 4.2.3.1 Corrosion -- 4.2.3.2 Effect of alloying elements on corrosion behavior of Mg materials -- 4.3 Magnesium for cardiovascular application -- 4.3.1 Limitations of bare metal stents and drug eluting stents -- 4.3.2 Biodegradable stents -- 4.3.2.1 Magnesium alloy biodegradable stents -- 4.4 Magnesium for orthopedic application.4.4.1 Current status of Mg-based materials for orthopedic application -- 4.4.1.1 In vitro testing of Mg-based orthopedic biomaterials -- 4.4.1.2 Preclinical studies of Mg or its alloys for orthopedic application -- 4.5 Magnesium-based nanocomposites -- 4.5.1 Disintegrated melt deposition (DMD) technique -- 4.5.2 Electrochemical behavior of Mg nanocomposites -- 4.5.2.1 Potentiodynamic polarization -- 4.6 Surface modification of Mg alloys -- 4.6.1 Effect of surface modification -- 4.6.1.1 Functional coatings -- 4.6.1.2 Conversion coatings -- 4.6.1.3 Surface coating processes -- 4.7 Future aspects -- References -- 5: Multiwalled carbon nanotube-based nanocomposites for artificial bone grafting -- 5.1 Introduction -- 5.2 Artificial bone grafting -- 5.2.1 Strategies for artificial bone grafting -- 5.3 Carbon nanotube -- 5.4 Multiwalled CNT composite biomaterials for artificial bone grafting -- 5.4.1 Multiwalled CNT-polymer nanocomposite -- 5.4.2 CNT coating on the polymeric surface -- 5.4.3 Multiwalled CNT-collagen nanocomposite -- 5.4.4 Multiwalled CNT-polylactic acid nanocomposite -- 5.4.5 Multiwalled CNT-chitosan nanocomposite -- 5.4.6 Multiwalled CNT-polycaprolactone nanocomposites -- 5.4.7 CNT-HA nanocomposite -- 5.4.8 CNT-bioglass nanocomposite -- 5.5 Challenges and future directions -- 5.6 Conclusions -- Acknowledgments -- References -- 7: Nanocomposite materials for prosthetic devices -- 6.1 Introduction -- 6.2 Preparation of nanocomposites -- 6.3 Classification of nanocomposites -- 6.3.1 Nonpolymer-based nanocomposites -- 6.3.1.1 Metal-metal nanocomposites -- 6.3.1.2 Metal-ceramic nanocomposites -- 6.3.1.3 Ceramic-ceramic nanocomposites -- 6.3.2 Polymer-based nanocomposites -- 6.4 Application of nanocomposites -- 6.5 Prosthetics -- 6.5.1 Types of prosthetics -- 6.5.2 Limb prosthetics.6.5.3 Patient course of action -- 6.5.4 Current innovation and assembling -- 6.5.5 Body-controlled arms -- 6.5.6 Lower-extremity prosthetics -- 6.5.6.1 Hands, hips, and knees -- 6.5.6.2 Socket -- 6.5.6.3 Shank and connectors -- 6.5.6.4 Foot -- 6.5.6.5 Knee joint -- 6.5.6.6 Microprocessor control -- 6.5.7 Myoelectric prosthetics -- 6.5.8 Orthopedic prosthetics -- 6.5.9 Robotic prostheses -- 6.6 Conclusion -- References -- 7: Nanocomposites for improved orthopedic and bone tissue engineering applications -- 7.1 Introduction -- 7.2 Biomedical nanocomposites -- 7.3 Nanocomposites in orthopedic drug delivery applications -- 7.4 Nanocomposites in bone tissue engineering applications -- 7.5 Conclusion -- References -- 8: Tailoring surface properties from nanotubes and anodic layers of titanium for biomedical applications -- 8.1 Introduction -- 8.1.1 Film formation by electrochemical process -- 8.1.1.1 Anodic oxidation and plasma electrolytic oxidation (PEO) -- 8.1.2 Nanotube arrays -- 8.2 Commercial applications -- 8.3 Mechanical stability of anodic layers -- 8.4 Conclusions -- References -- 9: Zirconia-alumina composite for orthopedic implant application -- 9.1 Introduction -- 9.1.1 Evolution of ceramic composite hip prostheses -- 9.2 The toughening mechanism in ceramic composite -- 9.2.1 Influence of platelets to inhibit crack propagation -- 9.2.2 Strengthening additives -- 9.3 Fabrication of ceramic composites -- 9.3.1 Densification process -- 9.3.1.1 Pressureless sintering -- 9.3.1.2 Pressure-assisted sintering -- 9.4 Wear of ceramic composite hip prosthesis -- 9.4.1 In vitro wear under standard conditions -- 9.4.2 In vitro wear under adverse conditions -- 9.5 Fracture-an ultimate challenge -- 9.6 Squeaking-a noise or concern -- 9.7 Clinical performance -- 9.8 Conclusions -- 9.9 Future aspects -- References.10: Nanocomposites in total hip joint replacements -- 10.1 Introduction -- 10.2 Biomaterials and their essential characteristics -- 10.3 Tribological characteristics, the main issue for joint implant materials -- 10.4 Morphology and importance of hip joint replacements -- 10.5 Implantable material systems for THR -- 10.5.1 Metal-on-polymer -- 10.5.2 Metal on metal -- 10.5.3 Ceramic on ceramic -- 10.6 Nanotechnology, the innovative approach -- 10.7 Nanocomposites -- 10.8 Types of NCs used in hip implants -- 10.8.1 Polymer matrix NC -- 10.8.1.1 Ultrahigh molecular weight polyethylene -- 10.8.1.2 UHMWPE-based composites -- 10.8.1.3 Advanced NCs using graphene and nanocarbon reinforcements -- Graphene/UHMWPE NCs -- CNTs/UHMWPE NCs -- 10.8.2 Metal matrix NCs -- 10.8.2.1 Co-Cr based NCs -- 10.8.2.2 Titanium-based NCs -- 10.8.3 Ceramic matrix NCs -- 10.8.3.1 New ceramics NCs with nanocarbon reinforcements -- 10.9 Conclusion -- Acknowledgments -- References -- Further reading -- 11: Chitosan-based nanocomposites for cardiac, liver, and wound healing applications -- 11.1 Introduction -- 11.2 Tissue engineering -- 11.2.1 Chitosan nanocomposites in liver tissue engineering -- 11.2.2 Chitosan nanocomposites in cardiac tissue engineering -- 11.2.3 Chitosan nanocomposite in wound healing applications -- 11.3 Conclusion -- Acknowledgments -- References -- 12: Extracellular matrix: The ideal natural fibrous nanocomposite products -- 12.1 Introduction -- 12.2 ECM-cell interaction: Cell receptors and biochemical cues -- 12.3 ECM-cell interaction: Cell fate and biophysical cues -- 12.3.1 Stiffness and matrix elasticity -- 12.3.2 Tension and compression -- 12.3.3 Fluid shear stress -- 12.4 Cell perception of biophysical cues from the ECM microenvironment -- 12.4.1 Focal adhesions -- 12.4.2 The cytoskeletal.12.4.3 The primary cilium.Woodhead Publishing series in biomaterials.OrthopedicsNanocomposites (Materials)Nanocomposites (Materials)Therapeutic useOrthopedics.Nanocomposites (Materials)Nanocomposites (Materials)Therapeutic use.617.3InamuddinAsiri Abdullah M.Mohammad AliMiAaPQMiAaPQMiAaPQBOOK9910583012803321Applications of nanocomposite materials in orthopedics2176587UNINA