01210nam a2200301 i 450099100148750970753620020507194342.0970530s1995 us ||| | eng 0130986178b10854162-39ule_instLE01313019ExLDip.to Matematicaeng621.382AMS 94A05Feher, Kamilo27462Wireless digital communications :modulation and spread spectrum applications /Kamilo FeherUpper Saddle River, New Jersey :Prentice-Hall,1995xx, 524 p. :ill. ;24 cm. + 1 computer disk (3 1/2 in.).Feher/Prentice Hall digital and wireless communication seriesIncludes bibliographical references (p. 499-516) and indexMobile communication systemsWireless communication systems.b1085416223-02-1728-06-02991001487509707536LE013 94A FEH11 (1995)12013000082349le013-E0.00-l- 00000.i1096583x28-06-02Wireless digital communications918539UNISALENTOle01301-01-97ma -engus 0102020nam 2200337z- 450 991058220100332120231214133046.03-7983-3253-3(CKB)5700000000101233(oapen)https://directory.doabooks.org/handle/20.500.12854/87653(EXLCZ)99570000000010123320202207d2022 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierMatching minors in bipartite graphsBerlinUniversitätsverlag der Technischen Universität Berlin20221 electronic resource (476 p.)Foundations of computing3-7983-3252-5 In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of a cross over a conformal cycle by means of a topological property. Furthermore, we develope a theory for perfect matching width, a width parameter for graphs with perfect matchings introduced by Norin. here we show that the disjoint alternating paths problem can be solved in polynomial time on graphs of bounded width. Moreover, we show that every bipartite graph with high perfect matching width must contain a large grid as a matching minor. Finally, we prove an analogue of the we known Flat Wall theorem and provide a qualitative description of all bipartite graphs which exclude a fixed matching minor.Algorithms & data structuresbicsscmatching minor; structural graph theory; bipartite; perfect matchingAlgorithms & data structuresWiederrecht Sebastianauth1293616BOOK9910582201003321Matching minors in bipartite graphs3022664UNINA