04222nam 2200985z- 450 991058021700332120220706(CKB)5690000000011917(oapen)https://directory.doabooks.org/handle/20.500.12854/87413(oapen)doab87413(EXLCZ)99569000000001191720202207d2022 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierFractional Calculus - Theory and ApplicationsBaselMDPI - Multidisciplinary Digital Publishing Institute20221 online resource (198 p.)3-0365-3262-5 3-0365-3263-3 In recent years, fractional calculus has led to tremendous progress in various areas of science and mathematics. New definitions of fractional derivatives and integrals have been uncovered, extending their classical definitions in various ways. Moreover, rigorous analysis of the functional properties of these new definitions has been an active area of research in mathematical analysis. Systems considering differential equations with fractional-order operators have been investigated thoroughly from analytical and numerical points of view, and potential applications have been proposed for use in sciences and in technology. The purpose of this Special Issue is to serve as a specialized forum for the dissemination of recent progress in the theory of fractional calculus and its potential applications.Mathematics & sciencebicsscResearch & information: generalbicssca spiral-plate heat exchangerboundednessCaputo fractional derivativecoupled hybrid Sturm-Liouville differential equationcoupled systemsdhage type fixed point theoremdistributed delayeconomic growthEuler waveletsexistencefinite time stabilityfixed pointfractional derivativefractional differential equationsfractional impulsive differential equationsfractional order derivative modelGPUgradient descentgroup of sevenGrünwald-Letnikov schemeHadamard-Caputo fractional derivativeheat transferHermite-Hadamard type inequalityHermite-Hadamard-Fejér inequalityhybrid differential equationsimpulsive differential equationsinstantaneous impulsesintegral boundary coupled hybrid conditionintegral equationsKatugampola fractional integral operatorLaplace transformlinear fractional systemLR-p-convex interval-valued functionmalaria infectionMittag-Leffler functionmulti-point boundary coupled hybrid conditionn/anon-instantaneous impulsesnonlinear systemnonlocal boundary conditionsnonstandard finite-difference methodnumerical approximationparallel modelpositivitypotential and current in an electric transmission linerandom walk of a populationRiemann-Liouville fractional derivativespace-fractional Fokker-Planck operatorstochastic epidemic modelstochastic generalized Eulertime-fractional diffusion-wave equationstime-fractional wave with the time-fractional damped termMathematics & scienceResearch & information: generalMacías Díaz Jorge Eedt1304527Macías Díaz Jorge EothBOOK9910580217003321Fractional Calculus - Theory and Applications3027527UNINA02725nam0 22005773i 450 VAN0027618520240806101544.474N978303089397220240522d2022 |0itac50 baengCH|||| |||||Evolutionary EquationsPicard's Theorem for Partial Differential Equations, and ApplicationsChristian Seifert, Sascha Trostorff, Marcus WaurickChamBirkhäuserSpringer2022xii, 317 p.ill.24 cm001VAN000366042001 Operator theory: advances and applications210 Basel [etc.]Birkhäuser1979-28735-XXPartial differential equations [MSC 2020]VANC019763MF35A01Existence problems for PDEs: global existence, local existence, non-existence [MSC 2020]VANC029152MF35A02Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness [MSC 2020]VANC029153MF35B35Stability in context of PDEs [MSC 2020]VANC022130MF47-XXOperator theory [MSC 2020]VANC019759MF47F05General theory of partial differential operators [MSC 2020]VANC037142MFCausalityKW:KCoupled SystemsKW:KDifferential-algebraic equationsKW:KElasticityKW:KEvolutionary InclusionsKW:KEvolutionary equationsKW:KExponential stabilityKW:KHeat equationKW:KHilbert space approachKW:KHomogenisationKW:KInitial boundary value problemsKW:KMathematical physicsKW:KMaxwell's equationsKW:KTime-dependent partial differential equationsKW:KWave equationKW:KCHChamVANL001889SeifertChristianVANV2288901214744TrostorffSaschaVANV2288911738575WaurickMarcusVANV082947721074Birkhäuser <editore>VANV108193650Springer <editore>VANV108073650ITSOL20250926RICAhttps://doi.org/10.1007/978-3-030-89397-2E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00276185BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-Book 8587 08eMF8587 20240605 Evolutionary Equations4160961UNICAMPANIA