01645nam 2200397 n 450 99639150470331620200824120829.0(CKB)1000000000658405(EEBO)2240961660(UnM)99866642e(UnM)99866642(EXLCZ)99100000000065840519940414d1658 uy |laturbn||||a|bb|Exercitationes aliquot metaphysicæ, de Deo[electronic resource] quòd sit objectum metaphysicæ, quòd sit naturaliter cognoscibilis, quousque, & quibus mediis. Quòd sit æternus, & immensus (contra Verstium) & quomodo, &c. Per Thomam Barlow, Artium Magistrum, & Collegii Reginæ Oxon. SociumEditio secunda.Oxoniæ excudebat A. Lichfield, acad. typograph. Impensis Jos. Godwin, & Tho. RobinsonM.DC.LVIII. [1658][12], 311, 310-329, [1] p. ill. (woodcuts)Originally published in 1637 as part 2 of "Metaphysica" by Christoph Scheibler (STC 21812 et seq.).Annotation on Thomason copy: "Septemb: 2d".Reproduction of the original in the British Library.eebo-0018GodMeditationsEarly works to 1800Philosophical theologyEarly works to 1800GodMeditationsPhilosophical theologyBarlow Thomas1607-1691.1001241Cu-RivESCu-RivESCStRLINWaOLNBOOK996391504703316Exercitationes aliquot metaphysicæ, de Deo2397341UNISA06392nam 2201645z- 450 991058021180332120220706(CKB)5690000000011970(oapen)https://directory.doabooks.org/handle/20.500.12854/87458(oapen)doab87458(EXLCZ)99569000000001197020202207d2022 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierMathematical Methods, Modelling and ApplicationsBaselMDPI - Multidisciplinary Digital Publishing Institute20221 online resource (410 p.)3-0365-4357-0 3-0365-4358-9 This volume deals with novel high-quality research results of a wide class of mathematical models with applications in engineering, nature, and social sciences. Analytical and numeric, deterministic and uncertain dimensions are treated. Complex and multidisciplinary models are treated, including novel techniques of obtaining observation data and pattern recognition. Among the examples of treated problems, we encounter problems in engineering, social sciences, physics, biology, and health sciences. The novelty arises with respect to the mathematical treatment of the problem. Mathematical models are built, some of them under a deterministic approach, and other ones taking into account the uncertainty of the data, deriving random models. Several resulting mathematical representations of the models are shown as equations and systems of equations of different types: difference equations, ordinary differential equations, partial differential equations, integral equations, and algebraic equations. Across the chapters of the book, a wide class of approaches can be found to solve the displayed mathematical models, from analytical to numeric techniques, such as finite difference schemes, finite volume methods, iteration schemes, and numerical integration methods.Mathematics and SciencebicsscResearch and information: generalbicsscadvection-diffusionanalytic network process (ANP)areal porosityARIMA modelcircular membraneclimate changeclosed-form solutioncollocationcompetitive balanceconservative formulationcontagion effectcontamination plumeconvergenceconvergence of modelscorrugated box printing machinecourtyarddiabetic retinopathydifference equationdifferential equationsdifferential-integral equationsDirichlet-to-Neumann mapdivided difference operatordynamical planeelectionsequations of motion in gravitational theoryfinite degree of randomnessfinite volume schemefluid-structure interactionfractal area-volume relationshipfractal conductivity modelGillespie algorithmHermite interpolationhighly oscillatoryimage processingincomplete rankingsinfiltration wellintegro-interpolation methodionospheric parametersiterative methodjoint probabilityKendall's taukinematics of a particlelabor conditionlaser coagulationmachine learningmathematical compartmental discrete modelmathematical modelingmatrix exponentialmatrix functionsmatrix hyperbolic tangentmatrix polynomial evaluationmaximum entropy principlemicroclimatemodified Delphi methodmonte carlo methodmultidimensional fragmentation equationn/aneural network NARXnodal systemsnonlinear problems in mechanicsnonlinear systemnumerical integrationnumerical methodsnumerical simulationocular fundusoptical coherence tomographyparameter planepermutation graphpolitical corruptionporous mediumpower series methodprobability density functionrandom finite difference schemerandom hyperbolic modelrandom laplace transformrandom mean square parabolic modelrandom nonlinear oscillatorrelativistic harmonic oscillatorrevolving doorssafe treatmentSchrödinger operatorsegmentationsensitivity analysissimulationspecial relativitysplitting methodSpotifystabilitystandard deviation of the errorstationary Gaussian noisestochastic modelingstochastic perturbationssupplierSupport Vector Regression (SVR)talbot algorithmTaylor seriestime series modeltortuosity factorunit circleuniversal curvesvirus propagationvolterra integral equationvolumetric porositywavelet transformweight functionsMathematics and ScienceResearch and information: generalJódar Lucasedt1304522Company RafaeledtJódar LucasothCompany RafaelothBOOK9910580211803321Mathematical Methods, Modelling and Applications3027522UNINA