10961nam 2200481 450 991056669990332120221124171434.03-527-81590-23-527-81589-9(MiAaPQ)EBC6964866(Au-PeEL)EBL6964866(CKB)21707964500041(EXLCZ)992170796450004120221124d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierHeterogeneous catalysis for sustainable energy /edited by Justin S. J. Hargreaves, Landong LiWeinheim, Germany :Wiley-VCH GmbH,[2022]©20221 online resource (585 pages)Print version: Li, Landong Heterogeneous Catalysis for Sustainable Energy Newark : John Wiley & Sons, Incorporated,c2022 9783527344857 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Hydrogen Economy -- Chapter 1 Catalytic Hydrogen Production -- 1.1 Introduction -- 1.1.1 Thermocatalytic Decomposition of Methane -- 1.1.1.1 Metal Catalysts -- 1.1.1.2 Carbon Catalysts -- 1.1.2 Partial Oxidation of Methane -- 1.1.3 Catalytic Reforming of Methane -- 1.1.3.1 Steam Reforming of Methane (SRM) -- 1.1.3.2 Oxidative Steam Reforming of Methane (OSRM) -- 1.1.3.3 CO2/Dry Reforming of Methane -- 1.1.4 Thermocatalytic Conversion of Other Fossil Fuels -- 1.2 Conclusions and Prospects -- References -- Chapter 2 Catalytic Reforming of Oxygen‐Containing Chemicals -- 2.1 Introduction -- 2.2 Catalytic Hydrogen Production from Methanol -- 2.2.1 Catalytic Hydrogen Production from Decomposition of Methanol -- 2.2.2 Catalytic Hydrogen Production from Partial Oxidation of Methanol -- 2.2.3 Catalytic Hydrogen Production from Steam Reforming of Methanol -- 2.2.4 Catalytic Hydrogen Production from Combined Reforming of Methanol -- 2.2.5 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Methanol -- 2.3 Catalytic Hydrogen Production from Ethanol -- 2.3.1 Catalytic Hydrogen Production from Steam Reforming of Ethanol -- 2.3.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethanol -- 2.4 Catalytic Hydrogen Production from Dimethyl Ether -- 2.4.1 Catalytic Hydrogen Production from Partial Oxidation of Dimethyl Ether -- 2.4.2 Catalytic Hydrogen Production from Autothermal Reforming of Dimethyl Ether -- 2.4.3 Catalytic Hydrogen Production from Steam Reforming of Dimethyl Ether -- 2.4.3.1 Mixed Bifunctional Catalysts -- 2.4.3.2 Supported Bifunctional Catalysts -- 2.5 Catalytic Hydrogen Production from Glycerol -- 2.5.1 Catalytic Hydrogen Production from Steam Reforming of Glycerol -- 2.5.1.1 Noble Metal Catalysts -- 2.5.1.2 Non‐noble Metal Catalysts.2.5.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Glycerol -- 2.6 Catalytic Hydrogen Production from Ethylene Glycol -- 2.6.1 Catalytic Hydrogen Production from Steam Reforming of Ethylene Glycol -- 2.6.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethylene Glycol -- 2.7 Catalytic Hydrogen Production from Sorbitol -- 2.8 Conclusions and Future Outlook -- References -- Chapter 3 Advances in Fischer-Tropsch Synthesis for the Production of Fuels and Chemicals -- 3.1 Introduction -- 3.2 Catalyst Development for Fischer-Tropsch Synthesis -- 3.2.1 Fe‐Based FTS -- 3.2.2 Co‐Based FTS -- 3.3 Selectivity Control for the Production of Hydrocarbon Liquid Fuels -- 3.3.1 Modified FTS Catalysts for Selectivity Control of Liquid Fuels -- 3.3.2 Bifunctional Catalysts for Selectivity Control of Liquid Fuels -- 3.4 Selectivity Control for Production of Chemicals -- 3.4.1 Syngas to Olefins -- 3.4.1.1 Fe‐Based FTO -- 3.4.1.2 Co‐Based FTO -- 3.4.1.3 Bifunctional Catalysts for Syngas to Olefins -- 3.4.2 Syngas to Aromatics -- 3.4.2.1 STA via Olefins as Intermediates (SOA) -- 3.4.2.2 STA via Methanol/Dimethyl Ether as Intermediates (SMA) -- 3.4.3 Syngas to C2+ Oxygenates -- 3.4.3.1 Co2C‐Containing Co‐Based Catalyst for Syngas to C2+ Oxygenates -- 3.4.3.2 Cu‐Modified FTS Catalysts -- 3.5 Summary and Outlook -- References -- Part II Methane Activation -- Chapter 4 Steam and Dry Reforming of Methane -- 4.1 Introduction -- 4.1.1 Steam Reforming of Methane -- 4.1.2 Dry Reforming of Methane -- 4.1.3 Thermodynamic Analysis of the SRM and DRM Reactions -- 4.2 Heterogeneous Catalysts for the SRM -- 4.2.1 Ni‐Based and Other Catalysts -- 4.2.2 Theoretical Studies on the SRM -- 4.3 Heterogeneous Catalysts for the DRM -- 4.3.1 Noble Metal Catalysts -- 4.3.2 Ni‐Based Catalysts -- 4.3.3 Co‐Based and Other Catalysts.4.3.4 Theoretical Studies on the DRM -- 4.4 Comments on Both SRM and DRM Processes -- 4.5 Final Remarks -- References -- Chapter 5 Methane Activation Over Zeolites -- 5.1 Introduction -- 5.1.1 The Direct Conversion of Methane -- 5.1.2 Introduction to Zeolites -- 5.2 Oxidative Coupling of Methane over Zeolite Catalysts -- 5.3 Methane Dehydroaromatization (MDA) -- 5.4 Metal‐Modified Zeolites for dMtM -- 5.4.1 Fe‐Modified Zeolites -- 5.4.2 Cu‐Modified Zeolites -- 5.4.2.1 Active Sites for Methane Partial Oxidation in Copper‐Modified Zeolites -- 5.4.2.2 Reaction Mechanism for the Partial Oxidation of Methane over Copper‐Modified Zeolites -- 5.4.2.3 Alternatives to Stepwise Methanol Production: Isothermal and Direct Catalytic Conversion of Methane to Methanol over Copper‐Modified Zeolites -- 5.4.2.4 Effect of Framework Topology and Composition on Methane Partial Oxidation over Copper‐Modified Zeolites -- 5.4.3 Zn‐Modified Zeolites -- 5.4.3.1 Mechanism of C-H Activation in Zinc‐Exchanged Zeolites -- 5.4.3.2 Zinc Oxide Clusters in Zeolites -- 5.4.3.3 The Role of Brønsted Acid Sites in C-H Activation -- 5.4.3.4 Reactivity of Methane with Small Molecules on Zinc‐Modified Zeolites -- 5.4.4 Other d‐Block Metals in Zeolites -- 5.5 Outlook -- References -- Chapter 6 The Selective Oxidation of Methane to Oxygenates Using Heterogeneous Catalysts -- 6.1 Introduction and Historical Context -- 6.2 Liquid‐Phase Reactions -- 6.2.1 Zeolite Catalysts -- 6.2.2 Noble Metal Catalysts -- 6.3 Gas‐Phase Reactions -- 6.3.1 Non‐zeolite Catalysts -- 6.3.2 Zeolite Catalysts -- 6.3.2.1 Copper as the Active Component -- 6.3.2.2 Iron as the Active Component -- 6.4 Conclusions and Outlook -- References -- Part III Alkane Activation -- Chapter 7 Catalytic Cracking of Hydrocarbons to Light Olefins -- 7.1 Background Introduction -- 7.2 Reaction Mechanism of Catalytic Cracking over Zeolites.7.2.1 Monomolecular or α‐Protolytic Cracking Mechanism -- 7.2.2 Bimolecular Cracking Mechanism -- 7.2.3 Monomolecular and Bimolecular Cracking Mechanism -- 7.3 Development of Zeolite Catalysts -- 7.3.1 Zeolites with Different Framework Structures -- 7.3.2 Adjustment of Acid Properties of ZSM‐5 Zeolite -- 7.3.2.1 Effect of Si/Al Ratio of ZSM‐5 Zeolite -- 7.3.2.2 Tuning of Al Siting and Distribution in ZSM‐5 Zeolite -- 7.3.2.3 Modification of ZSM‐5 Zeolites with Different Elements -- 7.3.3 Alkaline Metal‐ and Alkali Earth Metal‐Modified ZSM‐5 -- 7.3.4 Transition Metal‐Modified ZSM‐5 -- 7.3.5 Rare Earth Element‐Modified ZSM‐5 -- 7.3.6 Phosphorus‐Modified ZSM‐5 -- 7.4 Nano‐ZSM‐5 Zeolite -- 7.5 Hierarchical ZSM‐5 Zeolites -- 7.5.1 Mesoporous/Microporous ZSM‐5 Zeolites -- 7.5.1.1 Hard Template Method -- 7.5.1.2 Post‐treatment Method -- 7.5.1.3 Soft Template Method -- 7.5.1.4 Other Methods -- 7.5.2 Macroporous/Mesoporous/Microporous ZSM‐5 -- 7.5.3 Composite Zeolites -- 7.6 Outlook -- References -- Chapter 8 Catalytic Dehydrogenation of Light Alkanes -- 8.1 Introduction -- 8.2 Direct Dehydrogenation -- 8.2.1 Commercial Dehydrogenation Processes -- 8.2.1.1 Catofin Process -- 8.2.1.2 Oleflex Process -- 8.2.1.3 ADHO Technology -- 8.2.1.4 Other Processes -- 8.2.2 Direct Alkane Dehydrogenation Catalysts -- 8.2.2.1 CrOx‐Based Catalysts -- 8.2.2.2 Pt‐Based Catalysts -- 8.3 Oxidative Dehydrogenation -- 8.3.1 Transition Metal Oxide and Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.1 Vanadium Oxide‐Based Catalysts -- 8.3.1.2 MoVTeNbOx Catalysts -- 8.3.1.3 Nickel Oxide‐Based Catalysts -- 8.3.1.4 Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.5 Chemical Looping ODH -- 8.3.2 Boron‐Based Catalysts -- 8.3.2.1 Development of Boron‐Based Catalysts -- 8.3.2.2 Active Sites of Boron‐Based Catalysts -- 8.3.2.3 Possible Reaction Pathway -- 8.3.3 Carbon‐Based Catalysts.8.3.3.1 Development of Carbon‐Based Catalysts -- 8.3.3.2 Identification of Active Sites -- 8.3.3.3 Selectivity Control of Olefins -- 8.4 Summary and Outlook -- References -- Part IV Zeolite Catalysis -- Chapter 9 Zeolites for Sustainable Chemical Transformations -- 9.1 Introduction to Zeolites and Zeolite Chemistry -- 9.1.1 Zeolite Chemistry -- 9.1.2 Zeolites as Catalysts -- 9.1.3 Size Discrimination: Molecular Sieves -- 9.1.4 Zeolites as Supports for Metal Catalysts -- 9.1.4.1 Methods of Metal Deposition -- 9.1.5 Metals in the Zeolite Framework -- 9.1.5.1 Methods of Preparation -- 9.2 The Nature of Active Sites and Deactivation of Zeolite‐Based Catalysts -- 9.2.1 Active Sites in Zeolite Catalysis -- 9.2.1.1 Acid Sites -- 9.2.1.2 Basic Sites -- 9.2.1.3 Redox Sites in Zeolite Catalysts -- 9.3 Causes of Deactivation in Zeolite Catalysts -- 9.3.1 Poisoning -- 9.3.1.1 Deactivation through Carbonaceous Deposits (Coking) -- 9.3.1.2 Inhibition of Catalyst Activity Due to Water -- 9.3.1.3 Poisoning of Palladium Combustion Catalysts -- 9.3.2 Particle Sintering and Agglomeration -- 9.3.2.1 Particle Agglomeration in Ventilation Air Methane Oxidation Catalysts -- 9.4 Future Directions for Zeolite Catalysis -- References -- Chapter 10 Methanol to Hydrocarbons -- 10.1 Background Introduction -- 10.2 The Direct Mechanism for MTH Reaction -- 10.2.1 The Development and Milestones of the Direct Mechanism -- 10.2.2 The First C C Bond Formation -- 10.3 The Indirect Reaction Mechanism for MTH Reaction -- 10.3.1 Hydrocarbon Pool Mechanism -- 10.3.2 Dual‐Cycle Mechanism -- 10.3.3 The Connection Between the Dual Cycles -- 10.4 Bridging the Direct and Indirect Mechanisms -- 10.5 Zeolite Catalysts for MTH Conversion -- 10.6 Summary and Outlook -- References -- Part V Carbon Dioxide as C1 Building Block -- Chapter 11 Overview on CO2 Emission and Capture -- 11.1 Introduction.11.2 CO2 Emission and Related Problems.Renewable energy sourcesRenewable energy sources.333.794Hargreaves J. S. J(Justin S. J.),Li LandongMiAaPQMiAaPQMiAaPQBOOK9910566699903321Heterogeneous Catalysis for Sustainable Energy2839760UNINA