10928nam 2200493 450 991056669740332120221107141716.03-527-81725-53-527-81722-0(MiAaPQ)EBC6939778(Au-PeEL)EBL6939778(CKB)21420363100041(EXLCZ)992142036310004120221107d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierTransition metal oxides for electrochemical energystorage /edited by Jagjit Nanda, Veronica AugustynWeinheim, Germany :Wiley-VCH GmbH,[2022]©20221 online resource (435 pages)Print version: Nanda, Jagjit Transition Metal Oxides for Electrochemical Energy Storage Newark : John Wiley & Sons, Incorporated,c2022 9783527344932 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Foreword -- Chapter 1 An Overview of Transition Metal Oxides for Electrochemical Energy Storage -- 1.1 Fundamentals of Electrochemical Cells -- 1.2 Li‐Ion Batteries: Basic Principles and TMO Electrodes -- 1.3 Brief History of Lithium‐Ion Batteries -- 1.4 The Role of Advanced Characterization and Computing Resources -- 1.5 Beyond Lithium‐Ion Batteries -- Acknowledgments -- References -- Chapter 2 Metal-Ion‐Coupled Electron Transfer Kinetics in Intercalation‐Based Transition Metal Oxides* -- 2.1 Introduction -- 2.2 Thermodynamic Control -- 2.3 Diffusional Control -- 2.4 Kinetic Control -- 2.5 Effect of Surface Layers on Ion Transfer Kinetics -- 2.6 Slow Desolvation as a Limiting Intercalation Step -- 2.7 Concluding Remarks -- References -- Chapter 3 Next‐Generation Cobalt‐Free Cathodes - A Prospective Solution to the Battery Industry's Cobalt Problem* -- 3.1 Introduction -- 3.2 Potential of Cobalt‐Free Cathode Materials -- 3.3 Layered Cathodes -- 3.3.1 Conventional Layered Cathodes -- 3.3.2 Binary Layered Ni‐Rich Cathode Materials -- 3.3.3 Ternary Layered Ni‐Rich Cathode Materials -- 3.4 Spinel and Olivine Cathodes -- 3.5 Disordered Rocksalt (DRX) Cathodes -- 3.6 Challenges in Commercial Adoption of New Cobalt‐Free Chemistries -- 3.6.1 Synthesis of Cathode Precursors -- 3.6.2 Synthesis of Final Cathode Powders -- 3.6.3 Electrode Fabrication -- 3.6.4 Battery Assembly -- 3.7 Summary and Perspective -- Acknowledgments -- Conflict of Interest -- References -- Chapter 4 Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries* -- 4.1 Introduction -- 4.2 Potential Advantages and Challenges of the Conversion Mechanism -- 4.3 Transition Metal Oxides as Anode Materials -- 4.3.1 Iron Oxide (Fe3O4, Fe2O3) -- 4.3.2 Cobalt Oxide (CoO, Co3O4).4.3.3 Manganese Oxide (MnO, Mn3O4, MnO2) -- 4.3.4 Copper Oxide (Cu2O, CuO) -- 4.3.5 Nickel Oxide (NiO) -- 4.3.6 Ruthenium Oxide (RuO2) -- 4.3.7 Other Transition Metal Oxides -- 4.4 Summary and Outlook -- References -- Chapter 5 Layered Na‐Ion Transition‐Metal Oxide Electrodes for Sodium‐Ion Batteries -- 5.1 Introduction -- 5.2 Layered Transition‐Metal Oxides -- 5.2.1 Structural Classification -- 5.2.2 Single Transition‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.3 Mixed‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.4 Anionic Redox Activity for High Capacity -- 5.3 Summary and Outlook -- References -- Chapter 6 Anionic Redox Reaction in Li‐Excess High‐Capacity Transition‐Metal Oxides -- 6.1 Stoichiometric Layered Oxides for Rechargeable Lithium Batteries -- 6.2 Li‐Excess Rocksalt Oxides as High‐Capacity Positive Electrode Materials -- 6.3 Reversible and Irreversible Anionic Redox for Li3NbO4‐ and Li2TiO3‐Based Oxides -- 6.4 Activation of Anionic Redox by Chemical Bonds with High Ionic Characters -- 6.5 Li4MoO5 as a Host Structure for Lithium‐Excess Oxides -- 6.6 Extremely Reversible Anionic Redox for Li2RuO3 System -- 6.7 Anionic Redox for Sodium‐Storage Applications -- 6.8 Future Perspectives of Anionic Redox for Energy‐Storage Applications -- References -- Chapter 7 Transition Metal Oxides in Aqueous Electrolytes -- 7.1 Introduction: Opportunities and Challenges of Aqueous Batteries -- 7.2 Electrochemistry of Aqueous Batteries -- 7.2.1 Potential Window -- 7.2.2 Diverse Charge Transfer and Storage Processes in Aqueous Batteries -- 7.2.2.1 Overview of Various Storage Mechanisms -- 7.2.2.2 Semi‐quantitative Analysis of Storage Mechanism from Sweeping Voltammetry Analysis -- 7.2.2.3 Storage Mechanisms in Electrolyte with Different pH Values -- 7.3 Transition Metal Oxides for Aqueous EES -- 7.3.1 Manganese Compounds.7.3.1.1 Crystal Structures of Manganese Oxides for Aqueous Storage -- 7.3.1.2 Compositing Manganese Oxides with Other Additives -- 7.3.1.3 Surface Engineering Crystal Facets, Edge Sites, and Bulk/Nano Size Domain -- 7.3.1.4 Doping and Defect Chemistry -- 7.3.1.5 Pre‐intercalated Species -- 7.3.2 Ni Compounds -- 7.3.3 Vanadium Compounds -- 7.3.3.1 Li or Na Vanadates -- 7.3.4 Iron Compounds -- 7.3.4.1 Fe/Fe3O4 -- 7.3.4.2 Fe2O3/FeOOH -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 Nanostructured Transition Metal Oxides for Electrochemical Energy Storage -- 8.1 Fundamental Electrochemistry of Nanostructured TMOs -- 8.1.1 Thermodynamics of Charge Storage in Nanostructured TMOs -- 8.1.2 Kinetics of Charge Storage in Nanostructured TMOs -- 8.2 Emerging Nanostructured TMOs -- 8.2.1 Nanostructured TMO Cathodes for LIBs -- 8.2.2 Nanostructured Binary TMOs for Conversion‐Type Charge Storage -- 8.2.3 Nanostructured Binary TMOs for Intercalation‐Type Charge Storage -- 8.3 Implementation of Nanostructured TMOs in Electrode Architectures -- 8.3.1 One‐Dimensional and Two‐Dimensional Architectures -- 8.3.1.1 Nanowires and Nanotubes -- 8.3.2 Three‐Dimensional Architectures -- 8.3.2.1 Assemblies -- 8.3.2.2 Foams -- 8.3.2.3 Aerogels -- 8.4 Conclusions -- References -- Chapter 9 Interfaces in Oxide‐Based Li Metal Batteries* -- 9.1 Introduction -- 9.2 Solid Oxide Electrolytes -- 9.3 Cathode: Toward True Solid -- 9.3.1 Origin of Interfacial Impedance and Current Pressing Issues at Cathode/Solid Electrolyte Interfaces -- 9.3.1.1 Interfacial Reaction During Cell Fabrication -- 9.3.1.2 Electrochemical Oxidation and Chemical Reaction During Cycle -- 9.3.1.3 Chemo‐mechanical Degradation During Cycling -- 9.3.2 Strategies and Approaches Toward Enhanced Stability and Performance -- 9.3.2.1 Cathode Coating.9.3.2.2 Geometric Arrangement Concerns and Strategies Toward Maximizing Reaction Sites -- 9.3.2.3 Conductive Additives in Solid‐State Cathode -- 9.4 Anode: Adopting Lithium Metal in the Solid -- 9.4.1 Li/Solid-Electrolyte Interface: Chemical, Electrochemical, and Mechanical Considerations, Including Mitigation Strategies -- 9.4.2 Li Dendrite Formation and Propagation in Solid Electrolytes: Challenges and Strategies -- 9.5 Outlook and Perspective -- Acknowledgments -- Contributions -- Ethics Declarations -- References -- Chapter 10 Degradation and Life Performance of Transition Metal Oxide Cathodes used in Lithium‐Ion Batteries -- 10.1 Introduction -- 10.2 Degradation Trends -- 10.3 Transition Metal Oxide Cathodes -- 10.3.1 Spinel Cathodes -- 10.3.2 NCM System of Cathodes -- 10.3.3 NCMA Cathodes -- 10.4 Degradation Mechanism -- 10.5 Concluding Remarks -- References -- Chapter 11 Mechanical Behavior of Transition Metal Oxide‐Based Battery Materials -- 11.1 Introduction -- 11.2 Mechanical Responses to Compositional Changes -- 11.2.1 Volume Changes and Deformation in Electrode Particles -- 11.2.2 Particle Fracture -- 11.3 Impact of Strain Energy on Chemical Phenomena -- 11.3.1 Thermodynamics -- 11.3.2 Two‐Phase Equilibrium -- 11.4 Solid Electrolytes -- 11.4.1 Electrode/Electrolyte Interfaces -- 11.4.2 Electrolyte Fracture -- 11.5 Summary -- References -- Chapter 12 Solid‐State NMR and EPR Characterization of Transition‐Metal Oxides for Electrochemical Energy Storage -- 12.1 Introduction -- 12.2 Brief Introduction of NMR Basics -- 12.2.1 Nuclear Spins -- 12.2.2 NMR Spin Interactions -- 12.2.3 Paramagnetic Interactions and Experimental Approaches to Achieve High Spectral Resolution -- 12.3 Multinuclear NMR Studies of Transition‐metal‐oxide Cathodes -- 12.3.1 Li Extraction and Insertion Dynamics -- 12.3.2 O Evolution -- 12.4 EPR Studies -- 12.5 Summary.References -- Chapter 13 In Situ and In Operando Neutron Diffraction of Transition Metal Oxides for Electrochemical Storage -- 13.1 Introduction -- 13.1.1 Neutron Diffraction and Transition Metal Oxides -- 13.1.1.1 Neutron Reflectometry -- 13.1.1.2 Small‐Angle Neutron Scattering -- 13.1.1.3 Quasielastic and Inelastic Neutron Scattering -- 13.1.2 Neutron Diffraction Instrumentation -- 13.1.3 In Situ and In Operando Neutron Diffraction -- 13.2 Device Operation -- 13.2.1 Experimental Design and Approach to the Real‐Time Analysis of Battery Materials -- 13.2.2 Advancements in Understanding Electrode Structure During Battery Operation -- 13.3 Gas and Temperature Studies -- 13.3.1 Experimental Design and Approach to the In Situ Study of Solid Oxide Fuel‐Cell (SOFC) Electrodes -- 13.3.2 Advancements in Understanding Solid Oxide Fuel‐Cell Electrode Function -- 13.4 Materials Formation and Synthesis -- 13.5 Short‐Range Structure -- 13.6 Outlook -- Acknowledgments -- References -- Chapter 14 Synchrotron X‐ray Spectroscopy and Imaging for Metal Oxide Intercalation Cathode Chemistry -- 14.1 Introduction -- 14.2 X‐ray Absorption Spectroscopy -- 14.2.1 Soft X‐ray Absorption Spectroscopy -- 14.2.2 Hard X‐ray Absorption Spectroscopy -- 14.3 Real‐Space X‐ray Spectroscopic Imaging -- 14.3.1 2D Full‐Field X‐ray Imaging -- 14.3.2 X‐ray Tomographic Imaging -- 14.4 Conclusion -- References -- Chapter 15 Atomic‐Scale Simulations of the Solid Electrolyte Li7La3Zr2O12 -- 15.1 Introduction -- 15.1.1 Motivation -- 15.1.2 Solid Electrolytes -- 15.1.3 Li7La3Zr2O12 (LLZO) -- 15.1.4 Challenges -- 15.2 Elastic Properties of Li7La3Zr2O12 -- 15.3 Potential Failure Modes Arising from LLZO Microstructure -- 15.4 Conclusions -- Acknowledgements -- References.Chapter 16 Machine‐Learning and Data‐Intensive Methods for Accelerating the Development of Rechargeable Battery Chemistries: A Review.Transition metal oxidesElectronic books.Transition metal oxides.621.3126Augustyn VeronicaNanda JagjitMiAaPQMiAaPQMiAaPQBOOK9910566697403321Transition metal oxides for electrochemical energystorage2969248UNINA