06678nam 2200457 450 991056129240332120221118131530.03-030-96501-5(MiAaPQ)EBC6953200(Au-PeEL)EBL6953200(CKB)21511119600041(PPN)262173395(EXLCZ)992151111960004120221118d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierGenerative manufacturing of optical, thermal and structural components (GROTESK) /edited by Roland Lachmayer [and three others]Cham, Switzerland :Springer,[2022]©20221 online resource (164 pages)Print version: Lachmayer, Roland Generative Manufacturing of Optical, Thermal and Structural Components (GROTESK) Cham : Springer International Publishing AG,c2022 9783030965006 Includes bibliographical references and index.Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1 Additive Manufacturing of Glass Materials for the Production of Optical, Thermal and Structural Components -- 1 Introduction and Motivation -- 2 State of the Art -- 2.1 Glass in Optics and Laser Technology -- 2.2 Properties of Fused Silica -- 2.3 Technologies for Additive Manufacturing of Glass -- 2.4 Laser Glass Deposition -- 2.5 Process Parameters -- 3 Experiments -- 3.1 Parameter Studies -- 3.2 Waveguides -- 3.3 Sphere Lenses -- 3.4 Volume Components -- 3.5 Process Monitoring -- 4 Results and Sample Evaluation -- 4.1 Temperature Detection -- 4.2 Reproducibility -- 4.3 Stress Measurements -- 4.4 Measurement of Optical Transparency -- 5 Process Chain -- 6 Conclusion and Outlook -- References -- 2 Additively Manufactured Polymer Optomechanics and Their Application in Laser Systems -- 1 Introduction -- 2 State of the Art -- 2.1 Fused Filament Fabrication -- 2.2 Printing of Optomechanical Components -- 3 Experiments -- 3.1 Printing of Single Optomechanical Components -- 3.2 Integrated Optomechanical Systems -- 4 Conclusion and Outlook -- References -- 3 Additive Manufacturing of Optics and Optomechatronics: Multiphysics Simulation Environments for Process, Materials and Design Analysis -- 1 Introduction -- 2 Thermal Simulation of the Lateral and the Coaxial Laser Glass Deposition (LGD) Process Used for Optics Manufacturing -- 2.1 LGD Processes in GROTESK -- 2.2 Simulation Approach for the Lateral LGD Process -- 2.3 Simulation of the Lateral LGD Process -- 2.4 Evaluation of the Simulation Results for the Lateral LGD Process -- 2.5 Transfer of the Model to Simulate the Coaxial LGD Process -- 2.6 Simulation of the Coaxial LGD Process -- 2.7 Comparison of the Lateral and the Coaxial LGD Process -- 2.8 Evaporation of Glass.2.9 Simulation Methodology Discussion -- 3 Thermomechanical Simulation of an Additively Manufactured Laser Heat Sink Used as Optomechanical Component -- 3.1 Additively Manufactured Optomechanics for a Solid-State Amplifier System -- 3.2 Heat Generation in Laser Crystals -- 3.3 Multiphysics Simulation Approach -- 3.4 Investigation of Cooling Concepts for Additively Manufactured Heat Sinks -- 3.5 Heat Sink Filament Selection Criteria for a Non-destructive Laser System Operation -- 3.6 Simulation Methodology Discussion -- 4 Summary and Outlook -- References -- 4 Molybdenum Copper MMC for Additive Manufacturing of Thermal and Structural Components -- 1 Introduction -- 2 State of the Art and Scientific Bases -- 2.1 Challenge of Infrared Absorption of Copper -- 2.2 Metal Matrix Composites and Pseudo Alloys -- 3 Experimental Approach -- 3.1 Specimen Generation at Quasi-static Ideal Thermal Conditions -- 3.2 Material Adaption -- 4 Challenges in the Development of a Suitable Pseudo Alloy -- 4.1 Incompatibility of Material Groups -- 4.2 Materials Morphology -- 5 Results -- 5.1 Wetting of Matrix Material on Molybdenum -- 5.2 Coupling of YAG and Alloy -- 5.3 Thermal Expansion Coefficients -- 5.4 Thermal Conductivity -- 5.5 Transfer of Processing to Additive Manufacturing -- 5.6 Formation of Microstructure -- 6 Conclusion and Perspective -- References -- 5 Additive Manufacturing of Optical, Thermal and Structural Components by Laser Metal Deposition -- 1 Introduction -- 2 State-of-the-Art -- 2.1 Additive Manufacturing of Metals -- 2.2 Multi-Material Metal Processes -- 2.3 Process-Relevant Parameters -- 2.4 Process Monitoring and Control -- 3 Pseudoalloy Challenges -- 4 Implementation -- 4.1 Experimental Setup -- 4.2 Design of Experiments -- 4.3 Process Monitoring and Feedback Control via Machine Learning -- 5 Results -- 5.1 Material Evaluation.5.2 Closed Loop Process Control -- 5.3 Multi-Material Combinations: Lasing Medium and Metal -- 6 Conclusion and Outlook -- References -- 6 Development of System Technology for Coaxial Laser Material Deposition of Optical, Thermal and Structural Components -- 1 Introduction -- 1.1 Laser Material Deposition for Multi-Material Processing -- 1.2 Objectives of this Work -- 2 Development of Laser System Technology -- 2.1 Definition and Methodology -- 2.2 Target Criteria for the Development of System Technology -- 3 Laser Material Deposition for Optical, Thermal and Structural Components -- 3.1 Principle of Laser Radiation and Material Interaction -- 3.2 Possible Deposition Materials -- 4 Laser System Technology for Multi Material Laser Material Deposition -- 4.1 Minimum Required Components of the System -- 4.2 Types of Coaxial Systems Technology -- 4.3 Laser Sources, Guidance and Shaping -- 4.4 Deposition Material Handling -- 4.5 Mechanical Handling Systems -- 4.6 Commercially Available Processing Heads -- 5 Laser Material Deposition Processing Head for Glass and Metal Materials -- 5.1 Objective and Principle -- 5.2 Design of Systems Technology -- 5.3 Tests Performed and Results -- 6 Summary and Outlook -- 6.1 Summary -- 6.2 Outlook -- References -- Index.Additive manufacturingOptical instrumentsDesign and constructionAdditive manufacturing.Optical instrumentsDesign and construction.621.988Lachmayer RolandMiAaPQMiAaPQMiAaPQBOOK9910561292403321Generative manufacturing of optical, thermal and structural components (GROTESK)2968752UNINA