01097nam--2200373---450-99000614727020331620160520121541.0978-88-238-3494-1000614727USA01000614727(ALEPH)000614727USA0100061472720160520d2015----km-y0itay50------baitaIT||||||||001yyManager della qualitàil modello organizzativo ISO 9001Erika LeonardiMilanoEGEA2015VI, 181 p.ill.23 cm2001Cultura d'impresa2001001-------2001AziendeGestioneControlloControllo di qualità658.4013GESTIONE ESECUTIVA. CONTROLLO E GESTIONE DELLA QUALITA21LEONARDI,Erika361340ITsalbcISBD990006147270203316P13/126080 DISABKDISTRAGILIBERTI1020160520USA011215Manager della qualità1386512UNISA04690nam 2201261z- 450 991055779210332120210501(CKB)5400000000045467(oapen)https://directory.doabooks.org/handle/20.500.12854/68455(oapen)doab68455(EXLCZ)99540000000004546720202105d2021 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierBiomass for Energy ApplicationBasel, SwitzerlandMDPI - Multidisciplinary Digital Publishing Institute20211 online resource (246 p.)3-0365-0268-8 3-0365-0269-6 This book focuses on the utilization of biomass for energy applications and mainly covers the original research and studies related to thermochemical conversion, biological conversion and physical conversion. It contains a summary the current scientific knowledge in the field of biomass utilization, which is the first of its kind in the literature. Energy potentials and different principles of energy transformation from various renewable energy sources (bamboo, wood residue, straw, sorrel, hay, pines, sunflower stalks, hazelnut husks, quinoa, camelina, crambe, safflower, muscantus and municipal sewage sludge, among others) are described in detail in this book. Different types of pyrolysis or torrefaction processing, combustion, thermal degradation, mechanical properties affecting processing, pre-treatment or treatment processes, or other processes based on thermochemical methods are described as well. The integral part of this book is the bibliometric analysis of worldwide publication trends on biomass and bioenergy with respect to the research evolution with the possibility of predicting future scenarios and the participation of stakeholders in the sector.Technology: general issuesbicsscalkali metalalternative biofuelsash depositionbiocharbioenergy scenariobiofuelsbiogasbiomassbiomass analysisbiomass densificationbiomass industrial boilerbiomassesbriquette durabilitycalorific valuecatalystcirculating fluidized bedclostridium acetobutylicumCoffea spp.combustioncompressive strengthcropping systemdensificationdepositemissionemissionsenergyenergy consumptionenzymatic hydrolysisestablishmentFriedman-OFW-KAS modelsFT-IRfurfuralgrate furnacegrindinghigh heating valuehigh-efficiency fractionationhydrogenintercroppingkinetic modellingkinetic parameterslow-inputmaizemechanical compactionmechanical durabilitymethane yieldmiscanthusMoso bamboomultivariate tests of significancenatural binderolive mill solid wastesone-pot fractionation with acidic 1,4-dioxanepelletperennial cropphenolated ligninPhysico-chemical propertiesPinus leiophyllaPinus montezumaePinus pseudostrobuspressure torrefactionprocessing factorsproduct inhibitionproximate analysispyrolysispyrolysis kineticsreactor headspacerenewable energyrenewable energy sourcessewage sludgesolid biofuelsystematic reviewTGA-DTGthermogravimetric analysistorrefied biomasswastewaste biomasswaste managementwoodTechnology: general issuesHerak Davidedt1295508Herak DavidothBOOK9910557792103321Biomass for Energy Application3023553UNINA