00530nam 2200181z- 450 9910557525603321(CKB)5400000000044322(EXLCZ)99540000000004432220220406c2021uuuu -u- -engE-Business : Higher Education and Intelligence ApplicationsIntechOpen1-83962-463-9 E-Business BOOK9910557525603321E-Business : Higher Education and Intelligence Applications2828231UNINA01061nam a2200289 i 4500991000489379707536091211s2009 it 001 0 ita d9788877135537b13864877-39ule_instDip.to SSCita337.0905Marazzi, Christian121329Finanza bruciata /Christian Marazzi ; Prefazione di Silvano ToppiBellinzona :Edizioni Casagrande,2009140 p. ;19 cmAlfabetiEconomia mondialeSec. 21.Crisi economiche2008-2009CapitalismoToppi, Silvano.b1386487711-01-1211-12-09991000489379707536LE021 SOC I 06012021000172748le021-E14.50-l- 01010.i1505460311-01-10LE021 SOC26F712021000185281le021-E12.18-l- 01010.i1536427611-01-12Finanza bruciata231652UNISALENTOle02111-12-09ma -itait 0003738nam 22006975 450 991014191800332120251116162842.03-319-13263-610.1007/978-3-319-13263-1(CKB)2560000000326201(SSID)ssj0001424412(PQKBManifestationID)11821637(PQKBTitleCode)TC0001424412(PQKBWorkID)11367031(PQKB)11212342(DE-He213)978-3-319-13263-1(MiAaPQ)EBC5587696(Au-PeEL)EBL5587696(OCoLC)900868777(PPN)183519906(EXLCZ)99256000000032620120150107d2015 u| 0engurnn#008mamaatxtccrApproaching the Kannan-Lovász-Simonovits and Variance Conjectures /by David Alonso-Gutiérrez, Jesús Bastero1st ed. 2015.Cham :Springer International Publishing :Imprint: Springer,2015.1 online resource (X, 148 p.)Lecture Notes in Mathematics,0075-8434 ;2131Bibliographic Level Mode of Issuance: Monograph3-319-13262-8 The Conjectures -- Main Examples -- Relating the Conjectures -- Appendix -- Index.Focusing on two central conjectures from the field of Asymptotic Geometric Analysis, the Kannan-Lovász-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the topics treated. Employing a style suitable for professionals with little background in analysis, geometry or probability, the work goes directly to the connection between isoperimetric-type inequalities and functional inequalities, allowing readers to quickly access the core of these conjectures. In addition, four recent and important results concerning this theory are presented. The first two are theorems attributed to Eldan-Klartag and Ball-Nguyen, which relate the variance and the KLS conjectures, respectively, to the hyperplane conjecture. The remaining two present in detail the main ideas needed to prove the best known estimate for the thin-shell width given by Guédon-Milman, and an approach to Eldan’s work on the connection between the thin-shell width and the KLS conjecture.Lecture Notes in Mathematics,0075-8434 ;2131Functional analysisConvex geometryDiscrete geometryProbabilitiesFunctional Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12066Convex and Discrete Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21014Probability Theory and Stochastic Processeshttps://scigraph.springernature.com/ontologies/product-market-codes/M27004Functional analysis.Convex geometry.Discrete geometry.Probabilities.Functional Analysis.Convex and Discrete Geometry.Probability Theory and Stochastic Processes.515.7Alonso-Gutierrez Davidauthttp://id.loc.gov/vocabulary/relators/aut0Bastero Jesúsauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910141918003321Approaching the Kannan-Lovász-Simonovits and Variance Conjectures2105502UNINA