06312nam 2200505 450 991055515490332120220423093746.01-119-69989-41-119-69991-61-119-69987-8(CKB)4100000011995559(MiAaPQ)EBC6692405(Au-PeEL)EBL6692405(OCoLC)1263869041(EXLCZ)99410000001199555920220423d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPedestrian inertial navigation with self-contained aiding /Yusheng Wang and Andrei M. ShkelHoboken, New Jersey :IEEE Press :Wiley,[2021]©20211 online resource (193 pages)IEEE Press series on sensors1-119-69955-X Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Author Biographies -- List of Figures -- List of Tables -- Chapter 1 Introduction -- 1.1 Navigation -- 1.2 Inertial Navigation -- 1.3 Pedestrian Inertial Navigation -- 1.3.1 Approaches -- 1.3.2 IMU Mounting Positions -- 1.3.3 Summary -- 1.4 Aiding Techniques for Inertial Navigation -- 1.4.1 Non‐self‐contained Aiding Techniques -- 1.4.1.1 Aiding Techniques Based on Natural Signals -- 1.4.1.2 Aiding Techniques Based on Artificial Signals -- 1.4.2 Self‐contained Aiding Techniques -- 1.5 Outline of the Book -- References -- References -- Chapter 2 Inertial Sensors and Inertial Measurement Units -- 2.1 Accelerometers -- 2.1.1 Static Accelerometers -- 2.1.2 Resonant Accelerometers -- 2.2 Gyroscopes -- 2.2.1 Mechanical Gyroscopes -- 2.2.2 Optical Gyroscopes -- 2.2.2.1 Ring Laser Gyroscopes -- 2.2.2.2 Fiber Optic Gyroscopes -- 2.2.3 Nuclear Magnetic Resonance Gyroscopes -- 2.2.4 MEMS Vibratory Gyroscopes -- 2.2.4.1 Principle of Operation -- 2.2.4.2 Mode of Operation -- 2.2.4.3 Error Analysis -- 2.3 Inertial Measurement Units -- 2.3.1 Multi‐sensor Assembly Approach -- 2.3.2 Single‐Chip Approach -- 2.3.3 Device Folding Approach -- 2.3.4 Chip‐Stacking Approach -- 2.4 Conclusions -- References -- Chapter 3 Strapdown Inertial Navigation Mechanism -- 3.1 Reference Frame -- 3.2 Navigation Mechanism in the Inertial Frame -- 3.3 Navigation Mechanism in the Navigation Frame -- 3.4 Initialization -- 3.4.1 Tilt Sensing -- 3.4.2 Gyrocompassing -- 3.4.3 Magnetic Heading Estimation -- 3.5 Conclusions -- References -- Chapter 4 Navigation Error Analysis in Strapdown Inertial Navigation -- 4.1 Error Source Analysis -- 4.1.1 Inertial Sensor Errors -- 4.1.2 Assembly Errors -- 4.1.3 Definition of IMU Grades -- 4.1.3.1 Consumer Grade -- 4.1.3.2 Industrial Grade -- 4.1.3.3 Tactical Grade -- 4.1.3.4 Navigation Grade.4.2 IMU Error Reduction -- 4.2.1 Six‐Position Calibration -- 4.2.2 Multi‐position Calibration -- 4.3 Error Accumulation Analysis -- 4.3.1 Error Propagation in Two‐Dimensional Navigation -- 4.3.2 Error Propagation in Navigation Frame -- 4.4 Conclusions -- References -- Chapter 5 Zero‐Velocity Update Aided Pedestrian Inertial Navigation -- 5.1 Zero‐Velocity Update Overview -- 5.2 Zero‐Velocity Update Algorithm -- 5.2.1 Extended Kalman Filter -- 5.2.2 EKF in Pedestrian Inertial Navigation -- 5.2.3 Zero‐Velocity Update Implementation -- 5.3 Parameter Selection -- 5.4 Conclusions -- References -- Chapter 6 Navigation Error Analysis in the ZUPT‐Aided Pedestrian Inertial Navigation -- 6.1 Human Gait Biomechanical Model -- 6.1.1 Foot Motion in Torso Frame -- 6.1.2 Foot Motion in Navigation Frame -- 6.1.3 Parameterization of Trajectory -- 6.2 Navigation Error Analysis -- 6.2.1 Starting Point -- 6.2.2 Covariance Increase During Swing Phase -- 6.2.3 Covariance Decrease During the Stance Phase -- 6.2.4 Covariance Level Estimation -- 6.2.5 Observations -- 6.3 Verification of Analysis -- 6.3.1 Numerical Verification -- 6.3.1.1 Effect of ARW -- 6.3.1.2 Effect of VRW -- 6.3.1.3 Effect of RRW -- 6.3.2 Experimental Verification -- 6.4 Limitations of the ZUPT Aiding Technique -- 6.5 Conclusions -- References -- Chapter 7 Navigation Error Reduction in the ZUPT‐Aided Pedestrian Inertial Navigation -- 7.1 IMU‐Mounting Position Selection -- 7.1.1 Data Collection -- 7.1.2 Data Averaging -- 7.1.3 Data Processing Summary -- 7.1.4 Experimental Verification -- 7.2 Residual Velocity Calibration -- 7.3 Gyroscope G‐Sensitivity Calibration -- 7.4 Navigation Error Compensation Results -- 7.5 Conclusions -- References -- Chapter 8 Adaptive ZUPT‐Aided Pedestrian Inertial Navigation -- 8.1 Floor Type Detection -- 8.1.1 Algorithm Overview -- 8.1.2 Algorithm Implementation.8.1.2.1 Data Partition -- 8.1.2.2 Principal Component Analysis -- 8.1.2.3 Artificial Neural Network -- 8.1.2.4 Multiple Model EKF -- 8.1.3 Navigation Result -- 8.1.4 Summary -- 8.2 Adaptive Stance Phase Detection -- 8.2.1 Zero‐Velocity Detector -- 8.2.2 Adaptive Threshold Determination -- 8.2.3 Experimental Verification -- 8.2.4 Summary -- 8.3 Conclusions -- References -- Chapter 9 Sensor Fusion Approaches -- 9.1 Magnetometry -- 9.2 Altimetry -- 9.3 Computer Vision -- 9.4 Multiple‐IMU Approach -- 9.5 Ranging Techniques -- 9.5.1 Introduction to Ranging Techniques -- 9.5.1.1 Time of Arrival -- 9.5.1.2 Received Signal Strength -- 9.5.1.3 Angle of Arrival -- 9.5.2 Ultrasonic Ranging -- 9.5.2.1 Foot‐to‐Foot Ranging -- 9.5.2.2 Directional Ranging -- 9.5.3 Ultrawide Band Ranging -- 9.6 Conclusions -- References -- Chapter 10 Perspective on Pedestrian Inertial Navigation Systems -- 10.1 Hardware Development -- 10.2 Software Development -- 10.3 Conclusions -- References -- Index -- IEEE Press Series on Sensors -- EULA.IEEE Press series on sensors.Pedestrian inertial navigation systemsElectronic books.Pedestrian inertial navigation systems.910.285Wang Yusheng1992-1222008Shkel AndreiMiAaPQMiAaPQMiAaPQBOOK9910555154903321Pedestrian inertial navigation with self-contained aiding2833950UNINA