11042nam 2200565 450 991055509360332120220715095107.03-527-82512-63-527-82511-83-527-82510-X(CKB)4940000000618888(MiAaPQ)EBC6791561(Au-PeEL)EBL6791561(OCoLC)1281961202(EXLCZ)99494000000061888820220715d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierInnovative approaches towards ecological coal mining and utilization /Heping Xie, Chengwei Lv, Jiuping XuWeinheim, Germany :Wiley-VCH,[2022]©20221 online resource (381 pages)3-527-34692-9 Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 Technical Developing Pathway of Ecological Coal Mining -- 1.1 Background Introduction -- 1.2 Coal Mining Technology Development -- 1.2.1 Literature Analyses -- 1.2.1.1 Data Analysis System -- 1.2.1.2 Knowledge Diagram -- 1.2.2 Three Periods of Coal Mining Technology -- 1.2.2.1 Competition Phase -- 1.2.2.2 Diffusion Phase -- 1.2.2.3 Shift Phase -- 1.3 Discussion -- References -- Chapter 2 Developing Trending Toward Ecological Coal Utilization -- 2.1 Background Introduction -- 2.2 Coal Utilization Evolution -- 2.2.1 Initial Technological Competition -- 2.2.2 Fierce Innovative Diffusion -- 2.3 Coal Utilization Development Trends -- 2.3.1 Disruptive Integrated Shift -- 2.3.2 No‐Coal‐on‐Ground Integrated Energy System -- 2.4 Discussion -- References -- Chapter 3 Multiple Coal Seam Coproduction‐Oriented Equilibrium Approach Toward Coal-Water Conflict -- 3.1 Background Review -- 3.1.1 Multiple Coal Seam Production System -- 3.1.2 Mining Quota Allocation Scheme -- 3.1.3 Uncertain Condition -- 3.2 Modeling -- 3.2.1 Motivation for Employing Uncertain Variables -- 3.2.2 Typical Fuzzy Variables in the Proposed Method -- 3.2.3 Assumptions and Notations -- 3.2.3.1 Assumptions -- 3.2.3.2 Notations -- 3.2.4 Lower Level Decision‐Making Model -- 3.2.4.1 Objective Function -- 3.2.4.2 Constraints -- 3.2.5 Upper Level Decision Making Model -- 3.2.5.1 Objective -- 3.2.5.2 Constraints -- 3.2.6 Global Optimization Model -- 3.3 Solution Approach -- 3.3.1 Parameters Defuzzification -- 3.3.2 KKT Condition Transformation -- 3.4 Case Study -- 3.4.1 Presentation of Case Problem -- 3.4.2 Data Collection -- 3.4.3 Results for Different Scenarios -- 3.4.3.1 Scenario 1: Water Quality Standards I -- 3.4.3.2 Scenario 2: Water Quality Standards II -- 3.5 Discussion.3.5.1 Propositions and Analysis -- 3.5.2 Management Recommendations -- References -- Chapter 4 Seasonal Changes‐Oriented Dynamic Strategy Toward Coal-Water Conflict Resolutions -- 4.1 Background Expression -- 4.2 Methodology -- 4.2.1 Key Problem Statement -- 4.2.2 Modeling -- 4.2.2.1 Assumption -- 4.2.2.2 Notations -- 4.2.2.3 Logical Representation for the Collieries -- 4.2.2.4 Logical Representation for the Authority -- 4.2.2.5 Global Optimization Model for the EP‐MQC -- 4.2.3 Model Transformation -- 4.3 Case Study -- 4.3.1 Presentation of the Case Region -- 4.3.2 Data Collection -- 4.3.3 Results Under Different Situations -- 4.4 Discussion -- 4.4.1 Propositions and Analysis -- 4.4.2 Policy Recommendations -- References -- Chapter 5 GIS‐Oriented Equilibrium Strategy Toward Coal Gangue Contamination Mitigating -- 5.1 Review of Background -- 5.2 Key Problem Statement -- 5.3 Coal Gangue Facility Siting Method -- 5.3.1 Identifying Candidate Sites Using GIS Technique -- 5.3.2 Selecting the Optimal Site Using the Modeling Technique -- 5.3.2.1 Assumptions -- 5.3.2.2 Notations -- 5.3.2.3 Model Formulation -- 5.3.3 Model Transformation -- 5.4 Case Study -- 5.4.1 Case Region Presentation -- 5.4.2 GIS Technique -- 5.4.3 Modeling Technique -- 5.4.4 Data Collection -- 5.4.5 Computational Results and Analysis -- 5.4.5.1 Scenario 1: α&amp -- equals -- 1.0 -- 5.4.5.2 Scenario 2: α&amp -- equals -- 0.9 -- 5.4.5.3 Scenario 3: α&amp -- equals -- 0.8 -- 5.4.5.4 Scenario 4: α&amp -- equals -- 0.7 -- 5.4.5.5 Scenario 5: α&amp -- equals -- 0.6 -- 5.5 Discussion -- 5.5.1 Propositions -- 5.5.2 Management Recommendations -- References -- Chapter 6 Dynamic Investment Strategy Toward Emissions Reduction and Energy Conservation of Coal Mining -- 6.1 Background Review -- 6.1.1 Multi‐system Consideration of Emission and Energy.6.1.2 Multidimensional Consideration of Economic and Ecological Benefits -- 6.1.3 Multi‐stage Consideration of Environmental Investment -- 6.2 Modeling -- 6.2.1 Assumptions -- 6.2.2 Notations -- 6.2.3 Colliery Economic Benefit: Profit Objective -- 6.2.4 Colliery Ecological Benefit: Emission Reduction and Energy Conservation -- 6.2.5 Coal Production and Environmental Investment Activities -- 6.2.6 State Process Control Colliery Operations -- 6.2.7 Ecological Coal Mining Economic‐Ecological Equilibrium Model -- 6.3 Economic‐Ecological Equilibrium Model Solution Approach -- 6.3.1 General Parameterization -- 6.3.2 Fuzzy Goals for the Multiobjective Model -- 6.3.3 Standard and AM‐Based PSO for Nonlinear Dynamic Model -- 6.4 Case Study -- 6.4.1 Case Description -- 6.4.2 Parametrization -- 6.4.3 Data Collection -- 6.4.4 Results and Different Scenarios -- 6.4.4.1 Results Analysis -- 6.4.4.2 Sensitivity Analysis -- 6.5 Discussion and Analysis -- 6.5.1 Comprehensive Discussion for Results -- 6.5.2 Management Implications -- References -- Chapter 7 Carbon Dioxide Emissions Reduction‐Oriented Integrated Coal‐Fired Power Operation Method -- 7.1 Background Review -- 7.2 Key Problem Statement -- 7.3 Modeling -- 7.3.1 Assumptions -- 7.3.2 ICPBD Strategy Intentions -- 7.3.2.1 Maximizing Economic Benefit -- 7.3.2.2 Minimizing CO2 Emissions -- 7.3.3 ICPBD Strategy Limitations -- 7.3.3.1 Coal Purchase Phase Restriction -- 7.3.3.2 Coal Storage Phase Restrictions -- 7.3.3.3 Coal Blending Phase Restrictions -- 7.3.3.4 Coal Distribution Phase Restrictions -- 7.3.4 Global Model -- 7.4 Case Study -- 7.4.1 Presentation of Case Region -- 7.4.2 Model Transformation -- 7.4.3 Data Collection -- 7.5 Results and Discussion -- 7.5.1 Results for Different Scenarios -- 7.5.2 Propositions and Analysis -- 7.5.3 Management Recommendations -- References.Chapter 8 Equilibrium Coal Blending Method Toward Multiple Air Pollution Reduction -- 8.1 Background Presentation -- 8.1.1 Relationship Among All the Stakeholders -- 8.1.2 Decision Carrier Between All the Stakeholders -- 8.1.3 Modeling -- 8.1.3.1 Notations -- 8.1.3.2 Objectives of the Authority -- 8.1.3.3 Constrains of the Authority -- 8.1.3.4 Objectives of the CPPs -- 8.1.3.5 Constraints of the CPPs -- 8.1.3.6 Global Optimization Model -- 8.2 Case Study -- 8.2.1 Presentation of the Case Region -- 8.2.2 Model Transformation and Solution Approach -- 8.2.3 Data Collection -- 8.3 Results and Discussion -- 8.3.1 Results Under Different Scenarios -- 8.3.2 Propositions and Analysis -- 8.3.3 Management Recommendations -- References -- Chapter 9 Equilibrium Biomass-Coal Blending Method Toward Carbon Emissions Reduction -- 9.1 Background Review -- 9.2 Key Problem Statement -- 9.3 Modeling -- 9.3.1 Assumption -- 9.3.2 Notations -- 9.3.3 Model for the Local Authority -- 9.3.3.1 Objective 1: Maximizing Financial Revenue -- 9.3.3.2 Objective 2: Minimizing Carbon Emissions -- 9.3.3.3 Limitation on the CPPs' Operations -- 9.3.3.4 Power Supply Demand Restriction -- 9.3.3.5 Limitation on the Different Between the Quota and the Actual Emission -- 9.3.4 Model for CPPs -- 9.3.4.1 Objective: Maximizing Economic Benefits -- 9.3.4.2 Combustion Efficiency Constraint -- 9.3.4.3 Limitations on Fuel Quantities and Qualities -- 9.3.4.4 Technical Constraint -- 9.3.4.5 Social Responsibility Limitation -- 9.3.4.6 Carbon Emissions Quota Constraint -- 9.3.4.7 Fuel Resources Storage Limitation -- 9.3.5 Global Model -- 9.4 Case Study -- 9.4.1 Case Description -- 9.4.2 Model Transformation and Solution Approach -- 9.4.3 Data Collection -- 9.5 Results and Discussion -- 9.5.1 Results Under Different Scenarios -- 9.5.2 Propositions and Analyses -- 9.5.3 Policy Implications -- References.Chapter 10 Carbon Emission Reduction‐Oriented Equilibrium Strategy for Thermal-Hydro-Wind Generation System -- 10.1 Background Introduction -- 10.2 Modeling -- 10.2.1 Notations -- 10.2.2 Objectives -- 10.2.2.1 Carbon Emissions Reduction -- 10.2.2.2 Water Resources Wastes -- 10.2.2.3 Wind Power Utilization -- 10.2.2.4 Power Supply Balance -- 10.2.3 Constraint -- 10.2.3.1 Constraints of Wind Power -- 10.2.3.2 Constraints of Coal‐Combusted Power Plants -- 10.2.3.3 Constraint of Hydropower Station -- 10.2.3.4 Constraints of Hybrid Generation System -- 10.2.3.5 Global Model -- 10.3 Case Study -- 10.3.1 Case Description -- 10.3.2 Model Transformation -- 10.4 Data Collection -- 10.5 Result and Discussion -- 10.5.1 Result Under Different Scenarios -- 10.5.2 Comprehensive Discussion of Results -- 10.5.3 Management Recommendations -- References -- Chapter 11 Economic‐Environmental Equilibrium‐Based Wind-Solar-Thermal Power Generation System -- 11.1 Background Introduction -- 11.2 Key Problem Statement -- 11.3 Modeling -- 11.3.1 Notations -- 11.3.2 Objectives -- 11.3.2.1 Economic Profits -- 11.3.2.2 Carbon Emissions -- 11.3.2.3 Renewable Energy Utilization -- 11.3.3 Constraints -- 11.3.3.1 Constraints of Hybrid System -- 11.3.3.2 Constraints of Thermal Power Plant -- 11.3.3.3 Constraints of Wind Power Plant -- 11.3.3.4 Constraints of Solar Power Plant -- 11.3.4 Global Model -- 11.4 Case Study -- 11.4.1 Case Description -- 11.4.2 Model Transformation -- 11.4.3 Data Collection -- 11.4.4 Results and Analysis -- 11.5 Discussion -- 11.5.1 Propositions and Analysis -- 11.5.2 Management Recommendations -- References -- Chapter 12 Carbon Emissions Reductions‐Oriented Equilibrium Strategy for Municipal Solid Waste with Coal Co‐combustion -- 12.1 Background Introduction -- 12.2 Key Problem Statement -- 12.2.1 Conflict and Cooperation Between the Decision‐Makers.12.2.2 Trade‐Off Between the Economy and the Environment.Clean coal technologiesCoalEnvironmental aspectsCoal mines and miningEnvironmental aspectsElectronic books.Clean coal technologies.CoalEnvironmental aspects.Coal mines and miningEnvironmental aspects.363.738746Xie Heping754855Lv ChengweiXu Jiuping(Professor of management science),MiAaPQMiAaPQMiAaPQBOOK9910555093603321Innovative approaches towards ecological coal mining and utilization2899972UNINA