04394nam 2200493 450 991055506950332120211012080422.01-5231-4350-91-119-81822-21-119-81823-01-119-81821-4(CKB)4100000011804618(MiAaPQ)EBC6523022(Au-PeEL)EBL6523022(OCoLC)1243554002(PPN)261443917(EXLCZ)99410000001180461820211012d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierHeat transfer1Conduction /Michel Ledoux ; coordinated by Abdelkhalak El HamiLondon :ISTE ;Hoboken, NJ :John Wiley & Sons, Inc.,2021.1 online resource (xxii, 311 pages) illustrationsMathematical and mechanical engineering set ;Volume 91-78630-516-X Includes bibliographical references and index.Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- I.1. Preamble -- I.2. Introduction -- I.3. Interlude -- 1 The Problem of Thermal Conduction: General Comments -- 1.1. The fundamental problem of thermal conduction -- 1.2. Definitions -- 1.2.1. Temperature, isothermal surface and gradient -- 1.2.2. Flow and density of flow -- 1.3. Relation to thermodynamics -- 1.3.1. Calorimetry -- 1.3.2. The first principle -- 1.3.3. The second principle -- 2 The Physics of Conduction -- 2.1. Introduction -- 2.2. Fourier's law -- 2.2.1. Experiment -- 2.2.2. Temperature profile -- 2.2.3. General expression of the Fourier law -- 2.3. Heat equation -- 2.3.1. General problem -- 2.3.2. Mono-dimensional plane problem -- 2.3.3. Case of the axisymmetric system -- 2.3.4. Case of the spherical system -- 2.4. Resolution of a problem -- 2.5. Examples of application -- 2.5.1. Problems involving spherical symmetry -- 3 Conduction in a Stationary Regime -- 3.1. Thermal resistance -- 3.1.1. Thermal resistance: plane geometry -- 3.1.2. Thermal resistance: axisymmetric geometry. The case of a cylindrical wall -- 3.1.3. Thermal resistance to convection -- 3.1.4. Critical radius -- 3.2. Examples of the application of thermal resistance in plane geometry -- 3.3. Examples of the application of the thermal resistance in cylindrical geometry -- 3.4. Problem of the critical diameter -- 3.5. Problem with the heat balance -- 4 Quasi-stationary Model -- 4.1. We can perform a simplified calculation, adopting the following hypotheses -- 4.2. Method: instantaneous thermal balance -- 4.3. Resolution -- 4.4. Applications for plane systems -- 4.5. Applications for axisymmetric systems -- 5 Non-stationary Conduction -- 5.1. Single-dimensional problem -- 5.1.1. Temperature imposed at the interface at instant t =0.5.2. Non-stationary conduction with constant flow density -- 5.3. Temperature imposed on the wall: sinusoidal variation -- 5.4. Problem with two walls stuck together -- 5.5. Application examples -- 5.5.1. Simple applications -- 5.5.2. Some scenes from daily life -- 6 Fin Theory: Notions and Examples -- 6.1. Notions regarding the theory of fins -- 6.1.1. Principle of fins -- 6.1.2. Elementary fin theory -- 6.1.3. Parallelepiped fin -- 6.2. Examples of application -- Appendices -- Appendix 1: Heat Equation of a Three-dimensional System -- Appendix 2: Heat Equation: Writing in the Main Coordinate Systems -- Appendix 3: One-dimensional Heat Equation -- Appendix 4: Conduction of the Heat in a Non-stationary Regime: Solutions to Classic Problems -- Appendix 5: Table of erf (x), erfc(x) and ierfc(x) Functions -- Appendix 6: Complementary Information Regarding Fins -- Appendix 7: The Laplace Transform -- Appendix 8: Reminders Regarding Hyperbolic Functions -- References -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.Mathematical and mechanical engineering set ;Volume 9.HeatConductionHeatConduction.621.4022Ledoux Michel59813El Hami AbdelkhalakMiAaPQMiAaPQMiAaPQBOOK9910555069503321Heat transfer2816612UNINA