11087nam 2200493 450 991055306770332120221104124449.09789811904042(electronic bk.)9789811904035(MiAaPQ)EBC6931189(Au-PeEL)EBL6931189(CKB)21410036300041(PPN)261525581(EXLCZ)992141003630004120221104d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierThe theory of fault travel waves and its application /Xinzhou DongSingapore :Springer,[2022]©20221 online resource (745 pages)Print version: Dong, Xinzhou The Theory of Fault Travel Waves and Its Application Singapore : Springer Singapore Pte. Limited,c2022 9789811904035 Includes bibliographical references.Intro -- Foreword by Jiali He -- Foreword by Yaozhong Ge -- Foreword by Qixun Yang -- Preamble -- Contents -- 1 Introduction -- 1.1 Power Systems and Faults -- 1.2 Power System Failure Analysis -- 1.2.1 Kirchhoff's Law -- 1.2.2 Nodal Voltage and Loop Current Methods -- 1.2.3 Symmetric Component Method -- 1.2.4 Laplace Transform Method -- 1.2.5 Shortcomings of Existing Power System Fault Analysis -- 1.3 Challenges to Traditional Protective Relaying and Fault Detection Techniques -- 1.3.1 Transmission Line Split-Phase Current Differential Protection -- 1.3.2 Flexible DC Grid Protection -- 1.3.3 Single-Phase Grounding Protection for Distribution Lines in Neutral Point Noneffective Grounding Systems -- 1.3.4 Power Line Fault Location -- 2 Fundamentals of Electromagnetic Waves -- 2.1 Time-Varying Electromagnetic Fields -- 2.1.1 Maxwell's Equations -- 2.1.2 Poynting's Theorem -- 2.2 Wave Equations and Their D'Alembert Solutions -- 2.2.1 Wave Equations for the Electromagnetic Field -- 2.2.2 Dynamic Potentials -- 2.2.3 D'Alembert Solutions of the Wave Equation -- 2.3 Planar Electromagnetic Waves -- 2.3.1 Uniform Plane Waves in an Ideal Medium -- 2.3.2 Uniform Plane Waves in a Conductive Medium -- 2.3.3 Reflection of Electromagnetic Waves at the Interface of Different Media -- 2.4 Guided Electromagnetic Waves in Homogeneous Transmission Lines -- 2.4.1 Basic Equations for a Homogeneous Transmission Line -- 2.4.2 Sinusoidal Steady-State Solutions of the Uniform Transmission Line Equation -- 2.4.3 Equivalent Circuits and Operating States for Uniform Transmission Lines -- 2.5 Guided Electromagnetic Waves in Parallel Multiconductor Lines -- 2.5.1 Wave Equations for Parallel Multiconductor Lines -- 2.5.2 Phase-Modal Transformation of Parallel Multiconductor Lines -- 2.5.3 Wave Impedance and Wave Velocity on a Parallel Multiconductor Line Modulus.3 Fault Traveling Wave Theory -- 3.1 Fault Traveling Waves in Single-Phase Uniform Lossless Lines -- 3.1.1 Generation of Fault Traveling Waves -- 3.1.2 Fluctuation Equation for a Single Conductor Line -- 3.2 Fault Traveling Waves in Three-Phase Transmission Lines -- 3.2.1 Phase Mode Transformation -- 3.2.2 Composite Modulus Network -- 3.3 Traveling Wave Phenomena at Nominal Frequency -- 3.3.1 Line Wave Decomposition -- 3.3.2 Folded Reflection Phenomena of Traveling Waves -- 3.4 Status of Research on the Fault Traveling Wave Problem -- 3.5 Transient Solutions for Fault Traveling Waves Without Considering the Parameter-Dependent Frequency Characteristics -- 3.5.1 Basic Idea of the Grid Method for Solving Fault Traveling Waves [17] -- 3.5.2 Analysis of Faulted Traveling Wave Sources -- 3.5.3 Initial Traveling Waves for Different Traveling Wave Source Moduli -- 3.5.4 Representation of Power Networks -- 3.5.5 Reflection of Traveling Waves at Each Node -- 3.5.6 Fault Traveling Wave Resolution Calculation Method-Frequency Domain Method -- 3.6 Faulted Traveling Wave Transient Solutions Considering Parametric-Dependent Frequency Characteristics [17] -- 3.6.1 Complex Frequency Domain Solutions of the Fluctuation Equations for Parallel Multiconductor Lines -- 3.6.2 Selection of the Fitting Function for Traveling Waves Under Frequency-Dependent Characteristics -- 3.6.3 Acquisition of Parameters -- 3.7 Fault Steady-State Calculations -- 3.8 Computer Implementation of Fault Traveling Wave Transient Solutions -- 3.8.1 Representation and Storage of Power Networks -- 3.8.2 Network Changes After a Failure -- 3.8.3 Generation Method for Traveling Wave Propagation Paths -- 3.8.4 Calculation of Fault Traveling Waves -- 3.8.5 Analysis of Algorithms -- 3.9 Instantaneous Reactive Power Theory and Fault Direction Characteristics.3.9.1 Overview of Instantaneous Reactive Power Theory -- 3.9.2 Definition of Instantaneous Reactive Power Based on the Hilbert Transform -- 3.9.3 Fault Direction Characteristics of Reactive Power Under the Hilbert Transform [16] -- 3.10 Faulty Traveling Wave Characteristics for Various Fault Types -- 4 Wavelet Transform and Its Application to Fault Traveling Wave Analysis -- 4.1 Basic Concepts -- 4.1.1 History of Wavelet Analysis and Overview of Its Applications -- 4.1.2 Time-Frequency Localized Representation of the Signal -- 4.1.3 Continuous Wavelet Transform -- 4.1.4 Time-Frequency Localization Performance of Wavelet Transform -- 4.1.5 Two Important Types of Wavelet Transforms -- 4.1.6 Wavelet Representation of the Signal -- 4.2 Discrete Wavelet Transform -- 4.2.1 Discrete Wavelets and Discrete Wavelet Transforms -- 4.2.2 Multiresolution Analysis with Scale Functions -- 4.2.3 Mallat Algorithm -- 4.2.4 Coefficient Characteristics of the R-Wavelet -- 4.2.5 Applications of the Discrete Wavelet Transform -- 4.3 Dyadic Wavelet Transform and Singularity Detection of the Signal -- 4.3.1 Dyadic Wavelet and Dyadic Wavelet Transform -- 4.3.2 B-Sample-Based Dyadic Wavelet Function with a Scale Function -- 4.3.3 Decomposition and Reconstruction Algorithm for Dyadic Wavelet Transform -- 4.3.4 Wavelet Transform Modal Maxima Representation of Signals and Singularity Detection Theory -- 4.3.5 Reconstructing the Original Signal Using Wavelet Transform Modal Maxima [51] -- 4.3.6 Applications of the Dyadic Wavelet Transform [57] -- 4.4 Wavelet Representation of Fault Traveling Waves -- 4.4.1 Introduction -- 4.4.2 Fault Characteristics of Traveling Waves -- 4.4.3 Wavelet Transform Mode Maxima Representation of Various Traveling Waves -- 4.4.4 Comparison of Voltage Traveling Waves, Current Traveling Waves, and Directional Traveling Waves.5 Fault Traveling Wave Transmission Characteristics of Transformers and Secondary Cables -- 5.1 Current Transformer Model and Its Dynamic Transfer Characteristics -- 5.1.1 Operating Principle of Current Transformers and Their Electromagnetic Transient Model -- 5.1.2 Operating Frequency Transfer Characteristics of Current Transformers -- 5.1.3 Transient Traveling Wave Transfer Characteristics of Current Transformers -- 5.2 Voltage Transformer Model and Its Dynamic Transfer Characteristics -- 5.2.1 Operating Principle of Voltage Transformers and Their Corresponding Electromagnetic Transient Models -- 5.2.2 Operating Frequency Transfer Characteristics of Capacitance-Divided Voltage Transformers -- 5.2.3 Transient Traveling Wave Transfer Characteristics of Capacitive Voltage Transformers Under a Simplified Model [69] -- 5.2.4 Transient Traveling Wave Transfer Characteristics of Capacitive Voltage Transformers Under a Detailed Model -- 5.3 Fault Traveling Wave Transmission Characteristics of Secondary Cables -- 5.3.1 Equivalence Analysis Between the Centralized and Distributed Parameter Models for the Secondary-Side Cable -- 5.3.2 Equivalent Modeling of Secondary-Side Cables -- 5.4 Traveling Wave Transmission Characteristics of the Secondary Current Transmission Channel -- 5.4.1 Joint Modeling of Secondary Current Loops [89] -- 5.4.2 Analysis of the Secondary-Side Circuit Transmission Characteristics [89] -- 6 Transmission Line Longitudinal Traveling Wave Direction Protection -- 6.1 Wave Impedance Relays -- 6.1.1 Basic Principles of Wave Impedance Relays -- 6.1.2 Algorithmic Study of Wave Impedance Relays -- 6.1.3 Performance Analysis of Wave Impedance Relays -- 6.1.4 Use of Wave Impedance Relays to Form Longitudinal Directional Protection -- 6.2 Uniform Traveling Wave Direction Relay -- 6.2.1 Fundamentals of the Unified Traveling Wave Direction Relay.6.2.2 Uniform Traveling Wave Direction Relay Action Criterion -- 6.2.3 Modeling and Simulation -- 6.2.4 Motion Characteristics Analysis -- 6.2.5 Longitudinal Directional Protection of Transmission Lines Based on Unified Traveling Wave Directional Relays -- 6.3 Polarization Current Traveling Wave Direction Relay -- 6.3.1 Consistency of Line Wave Polarity for Voltage Faults at Different Frequency Bands -- 6.3.2 Polarization Current Traveling Wave Direction Relay Principle and Algorithm -- 6.3.3 Performance Analysis of Polarization Current Traveling Wave Direction Relay Operation -- 6.3.4 TP-01 Ultrahigh-Speed Traveling Wave Protection Device -- 7 Transmission Line Longitudinal Traveling Wave Differential Protection -- 7.1 Traveling Wave Differential Protection -- 7.1.1 Basic Principle of Traveling Wave Differential Protection -- 7.1.2 Traveling Wave Differential Current and Traveling Wave Braking Current Components [112] -- 7.1.3 Unbalanced Traveling Differential Current Analysis During Out-of-Area Disturbances or Faults -- 7.1.4 Comparison of Traveling Wave Differential Currents During in- and Out-of-Zone Faults -- 7.1.5 Action Criteria -- 7.1.6 Protection Algorithms -- 7.1.7 Modeling Simulation and Performance Evaluation -- 7.1.8 PT Disconnection Handling -- 7.1.9 TP-02 Traveling Wave Differential Protection Device -- 7.2 Reconfiguration of Current Traveling Wave Differential Protection -- 7.2.1 Reconstructing the Current Traveling Wave -- 7.2.2 Characterization of Reconstructed Current Traveling Waves -- 7.2.3 Principle of Reconfiguration of Current Traveling Wave Differential Protection -- 7.2.4 Reconfigured Current Traveling Wave Differential Protection Algorithm -- 7.2.5 Reconfiguration of Current Traveling Wave Differential Protection Performance Evaluation -- 7.3 Traveling Wave Differential Protection Based on Wavelet Transform Modulus Maxima.7.3.1 Ideas for Constructing Traveling Wave Differential Protection Using Initial Traveling Wave Modulus Maxima.Electric fault locationData processingShort circuitsElectric fault locationData processing.Short circuits.621.3104Dong Xinzhou1216134MiAaPQMiAaPQMiAaPQ9910553067703321The Theory of Fault Travel Waves and Its Application2810576UNINA