10739nam 2200481 450 991054485590332120231110223731.03-030-91511-5(MiAaPQ)EBC6887202(Au-PeEL)EBL6887202(CKB)21167319000041(PPN)260826081(EXLCZ)992116731900004120220928d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSeries-parallel converter-based microgrids system-level control and stability /Yao Sun [and five others]Cham, Switzerland :Springer,[2022]©20221 online resource (384 pages)Power Systems Print version: Sun, Yao Series-Parallel Converter-Based Microgrids Cham : Springer International Publishing AG,c2022 9783030915100 Intro -- Preface -- Acknowledgments -- Contents -- About the Authors -- List of Symbols -- 1 Overview of Microgrid -- 1.1 Microgrid Concept and Challenges -- 1.1.1 Microgrid Concept -- 1.1.2 Challenges for Microgrid -- 1.2 Converters Classification in Microgrid -- 1.2.1 Grid-Following Converter -- 1.2.2 Grid-Forming Converter -- 1.3 Architecture of Microgrid -- 1.3.1 Parallel-Type Microgrid -- 1.3.2 Series-Type Microgrid -- 1.3.3 Hybrid Series-Parallel Microgrid -- 1.4 Hierarchical Control Theory-General Introduction and Motivation -- 1.4.1 Primary Control -- 1.4.1.1 Conventional Droop Control -- 1.4.1.2 Virtual Impedance Control -- 1.4.2 Secondary Control -- 1.4.2.1 Centralized Control -- 1.4.2.2 Distributed Control and the Consensus Algorithm -- 1.4.3 Tertiary Control -- 1.5 Microgrid System Stability -- 1.5.1 Classification of Microgrid System Stability -- 1.5.1.1 Power Supply and Balance Stability -- 1.5.1.2 Control System Stability -- 1.5.2 Stability Analysis and Performance Assessment -- 1.5.2.1 Time-Scale Separation and Model Reduction -- 1.5.2.2 Stability of a Single Converter Connected to an Infinite Bus -- 1.5.2.3 Stability of Multi-Converter Systems -- 1.5.2.4 Stability of Multi-Converter Multi-Machine Systems -- 1.6 Organization of the Book -- References -- Part I Parallel-Type Microgrid System -- 2 Unified Droop Control Under Different Impedance Types -- 2.1 Different Droop Control Under Different Impedance Types -- 2.2 Basic Droop Control -- 2.2.1 Fundamental Concept of Frequency Droop -- 2.2.2 Equivalence of Virtual Impedance and Angle Droop -- 2.2.3 Analogy Between Angle Droop and Frequency Droop -- 2.3 Unified Droop Control Under Different Impedance Types -- 2.3.1 Unified Droop Control -- 2.3.2 Small-Signal Analysis -- 2.4 Simulation Results -- 2.5 Experimental Results -- 2.6 Conclusion -- References.3 Dynamic Frequency Regulation Via Adaptive Virtual Inertia -- 3.1 Analogy Between Droop Control and Virtual Synchronous Generator -- 3.2 Algorithm of Adaptive Virtual Inertia -- 3.2.1 Comparison Between SG and Droop-Based DG -- 3.2.2 Adaptive Virtual Inertia -- 3.2.3 Practical Control Scheme Without Derivative Action -- 3.3 Stability Proof -- 3.3.1 Single Inverter-Based DG in Grid-Connected Mode -- 3.3.2 Synchronization of Multiple DGs in Islanded Mode -- 3.4 Design Guidelines for Key Control Parameters -- 3.4.1 Design Guideline for Droop Damping Coefficient Dm -- 3.4.2 Design Guideline for Inertia Coefficient J0 -- 3.4.3 Design Guideline for Inertia Compensation Coefficient k -- 3.4.4 Parameter Design to Limit Excessive RoCoF -- 3.4.5 Adaptive Inertia Bound [Jmin, Jmax] to Avoid Long-Term Overcapacity of Converters -- 3.5 Hardware-In-Loop (HIL) Results -- 3.5.1 Case 1: Under Resistive Time-Varying Load -- 3.5.2 Case 2: Under Frequent-Variation Load -- 3.5.3 Case 3: Under Induction Motor (IM) -- 3.5.4 Case 4: Comparisons with Alternating Inertia Method -- 3.5.5 Case 5: Adaptive Inertia Control with Three DGs -- 3.5.6 Case 6: Adaptive Inertia Control with RoCoFLimitation -- 3.6 Conclusion -- References -- 4 Accurate Reactive Power Sharing -- 4.1 Analysis of Conventional Droop Control Method -- 4.1.1 Conventional Droop Control -- 4.1.2 Reactive Power Sharing Errors Analysis -- 4.2 Reactive Power Sharing Error Compensation Method -- 4.2.1 Droop Controller -- 4.2.2 Communication Setup -- 4.2.3 Convergence Analysis -- 4.3 Simulation Results -- 4.3.1 Case 1: Power Sharing Accuracy Improvement -- 4.3.2 Case 2: Effect of Communication Delay -- 4.3.3 Case 3: Effect of Load Change -- 4.4 Experimental Results -- 4.5 Conclusion -- References -- 5 Droop-Based Economical Dispatch -- 5.1 Economical Dispatch Problems Formulation.5.2 GOD Criterion and Decentralized Control Schemes -- 5.2.1 GOD Criterion Via Decentralized Manner -- 5.2.2 Decentralized Suboptimal Scheme -- 5.3 Simulation and Experimental Results -- 5.3.1 Case 1: Global Optimal Case -- 5.3.2 Case 2: Suboptimal Case -- 5.3.3 Case 3: Suboptimal Case -- 5.4 Conclusion -- References -- 6 Dynamic Distributed Consensus Control Strategy -- 6.1 Analysis of Modular UPS System -- 6.1.1 Configuration of Modular UPS System -- 6.1.2 Operation Principle of Modular UPS System -- 6.2 Dynamic Consensus-Based Adaptive Virtual ResistanceControl -- 6.3 Simulation Results -- 6.3.1 Case 1: Dynamic Performance Test with Linear Load and Mismatched Line Resistance -- 6.3.2 Case 2: Dynamic Performance Test with Both Linear and Nonlinear Loads -- 6.4 Experimental Results -- 6.4.1 Case 1: Under Linear Load -- 6.4.2 Case 2: Under Generalized Load -- 6.5 Conclusion -- References -- 7 Distributed Event-Triggered Control with Less Communication -- 7.1 Islanded Microgrid Analysis -- 7.1.1 Reactive, Unbalanced, and Harmonic Power Sharing Analysis in Islanded AC Microgrids -- 7.1.2 Communication Network -- 7.2 Distributed Event-Triggered Control -- 7.2.1 Power Calculation -- 7.2.2 Controller Design -- 7.3 Stability Analysis -- 7.3.1 Proof of Theorem -- 7.3.2 Inter-Event Interval Analysis -- 7.4 Experimental Results -- 7.4.1 Case 1: Unbalanced Load -- 7.4.2 Case 2: Nonlinear Load -- 7.4.3 Case 3: Comparison with Periodic Communication -- 7.5 Conclusion -- References -- Part II Series-Type Microgrid Systems -- 8 Decentralized Method for Islanded Operation Mode -- 8.1 Series-Type Microgrid Configuration -- 8.2 Traditional Operation Mode -- 8.3 Decentralized Control Method Design -- 8.3.1 An f-P/Q Droop Control Scheme -- 8.3.2 A New Decentralized Control with Unique Equilibrium Point -- 8.3.3 Power Factor Angle Droop Control -- 8.4 Stability Analysis.8.5 Case Study -- 8.5.1 Case 1: Suited for All Types of Loads -- 8.5.2 Case 2: Unique Equilibrium Point -- 8.6 Conclusion -- References -- 9 Decentralized Optimal Economical Dispatch Scheme -- 9.1 Economical Optimization of Series-Type Microgrids -- 9.1.1 Economical Optimization Problem Formulation -- 9.2 Communication-Free Economical Operation Control Scheme -- 9.2.1 Control Scheme -- 9.2.2 Steady-State Analysis -- 9.3 Stability Analysis -- 9.4 Simulation Results -- 9.4.1 Case 1: Switch Between the RL and RC Load -- 9.4.2 Case 2: Optimal Economical Operation Under RL Load -- 9.4.3 Case 3: Optimal Economical Operation Under RC Load -- 9.4.4 Case 4: Capacity Constraints -- 9.4.5 Case 5: Comparisons Between the Scheme and Existing Method -- 9.4.6 Case 6: Performance of the Scheme Under the Feeder Impedance Variation -- 9.5 Experimental Results -- 9.6 Conclusion -- References -- 10 Decentralized SOC Balancing Control for Series-Type Storages -- 10.1 Decentralized SOC Balancing Control -- 10.1.1 Equivalent Model of Series Energy Storage System -- 10.1.2 Approximate Relationship Between SOC and Output Power -- 10.1.3 SOC Balancing Control Method -- 10.1.4 Design of Double Control Loop -- 10.2 Stability Analysis of the Decentralized SOC BalancingControl -- 10.2.1 Singular Perturbation Theory -- 10.2.2 System Model -- 10.2.3 Analysis on the Outer System -- 10.2.4 Analysis on the Boundary Layer System -- 10.3 Simulation Results -- 10.3.1 Case 1: SOC Balancing in Four Quadrant Operations -- 10.3.2 Case 2: Mode Switching Between Discharging and Charging -- 10.3.3 Case 3: Simulation Tests Under Discharging Mode with Load Characteristics Changing -- 10.3.4 Case 4: Different Capacities of ESU -- 10.3.5 Case 5: Comparison of ESS with and Without SOC Balancing Control -- 10.4 Experimental Results -- 10.5 Conclusion -- References.11 Decentralized Control Strategies in Grid-Connected Mode -- 11.1 Decentralized Control for Grid-Connected Series-Connected Inverters -- 11.1.1 Equivalent Models of Grid-Connected Series-Connected Inverters -- 11.1.2 Decentralized P-ω Droop Control -- 11.1.3 Steady State and Stability Analysis -- 11.1.4 Simulation Results -- 11.2 Decentralized Control for Series-Connected H-BridgeRectifiers -- 11.2.1 Models of Series-Connected Rectifiers -- 11.2.2 Decentralized Control for Series-Connected H-Bridge Rectifiers -- 11.2.3 Steady State and Synchronization Mechanism Analysis -- 11.2.4 Discussion and Comparisons Between the Introduced Control and Existing Methods -- 11.2.5 Experimental Results -- 11.3 Decentralized Control Scheme for Medium/High Voltage Series-Connected STATCOM -- 11.3.1 Models of Series-Connected STATCOM -- 11.3.2 Decentralized Control for Series-ConnectedSTATCOM -- 11.3.3 Steady State and Stability Analysis -- 11.3.4 Improved Decentralized Control for Abnormal-Grid Condition -- 11.3.5 Simulation Results -- 11.4 Conclusion -- References -- 12 A Master-Slave Control in Grid-Connected Applications -- 12.1 Hybrid Voltage/Current Control -- 12.1.1 Control Configuration of Series Inverters -- 12.1.2 Hybrid Voltage/Current Control in DecentralizedManner -- 12.2 Performance Discussion and Comparison -- 12.2.1 Steady-State Analysis and Comparison with Existing Methods -- 12.2.2 Synchronization Mechanism -- 12.2.3 Discussion of One-to-All-Failure Redundancy -- 12.3 Experimental Results -- 12.3.1 Case 1: Source Power Change Under Unity PF -- 12.3.2 Case 2: Grid Voltage Sag Under No-Unity PF -- 12.3.3 Case 3: Large Source Power Gap Among SomeInverters -- 12.3.4 Case 4: Grid Frequency Deviation -- 12.3.5 Case 5: Grid Harmonics Condition -- 12.3.6 Case 6: Grid Impedance Variation -- 12.3.7 Case 7: One CCI Unit Fault Redundancy.12.3.8 Case 8: One VCI Unit Fault Redundancy.Power Systems Microgrids (Smart power grids)Microgrids (Smart power grids)621.31Sun Yao695828MiAaPQMiAaPQMiAaPQBOOK9910544855903321Series-Parallel Converter-Based Microgrids2769486UNINA