01467nam2-2200433---450-99000306031020331620080205174721.088-516-0080-5000306031USA01000306031(ALEPH)000306031USA0100030603120080201d2006----km-y0itay50------baitaITa---||||001yyAndare, restare, tornarecinquant'anni di emigrazione italiana in Germaniaa cura di Francesco Carchedi, Enrico Pugliese[Isernia]Cosmo Iannone[c2006]255 p.ill.24 cmQuaderni sulle migrazionidiretti da Norberto Lombardi16[Fondazione Nicola e Giulia Iannone]2001Quaderni sulle migrazionidiretti da Norberto Lombardi20010010003061712001Emigrazione italianaGermaniaSec. 20.304.80945CARCHEDI,FrancescoPUGLIESE,Enrico<1942- >ITsalbcISBD990003060310203316III.1. Coll. 9/ 8203995 LMIII.1. Coll.00066761BKUMASENATORE9020080201USA011731SENATORE9020080205USA011746SENATORE9020080205USA011747ANNAMARIA9020110512USA011415Andare, restare, tornare1022274UNISA03089nam 2200565 450 991053969110332120200923020339.03-11-054348-610.1515/9783110545258(CKB)4100000001044486(MiAaPQ)EBC5150943(DE-B1597)480963(OCoLC)1013826258(DE-B1597)9783110545258(Au-PeEL)EBL5150943(CaPaEBR)ebr11471630(EXLCZ)99410000000104448620171220h20172017 uy 0engurcnu||||||||rdacontentrdamediardacarrierNoncommutative geometry a functorial approach /Igor V. NikolaevBerlin, [Germany] ;Boston, [Massachusetts] :De Gruyter,2017.©20171 online resource (266 pages) illustrationsDe Gruyter Studies in Mathematics,0179-0986 ;Volume 663-11-054317-6 3-11-054525-X Includes bibliographical references and index.Frontmatter -- Preface -- Contents -- Introduction -- Part I: Basics -- 1. Model examples -- 2. Categories and functors -- 3. C∗-algebras -- Part II: Noncommutative invariants -- 4. Topology -- 5. Algebraic geometry -- 6. Number theory -- Part III: Brief survey of NCG -- 7. Finite geometries -- 8. Continuous geometries -- 9. Connes geometries -- 10. Index theory -- 11. Jones polynomials -- 12. Quantum groups -- 13. Noncommutative algebraic geometry -- 14. Trends in noncommutative geometry -- References -- IndexThis book covers the basics of noncommutative geometry (NCG) and its applications in topology, algebraic geometry, and number theory. The author takes up the practical side of NCG and its value for other areas of mathematics. A brief survey of the main parts of NCG with historical remarks, bibliography, and a list of exercises is included. The presentation is intended for graduate students and researchers with interests in NCG, but will also serve nonexperts in the field. ContentsPart I: BasicsModel examplesCategories and functorsC∗-algebrasPart II: Noncommutative invariantsTopologyAlgebraic geometryNumber theoryPart III: Brief survey of NCGFinite geometriesContinuous geometriesConnes geometriesIndex theoryJones polynomialsQuantum groupsNoncommutative algebraic geometryTrends in noncommutative geometry De Gruyter studies in mathematics ;Volume 66.Noncommutative differential geometryGeometry, AlgebraicNumber theoryNoncommutative differential geometry.Geometry, Algebraic.Number theory.516.3/5SK 240rvkNikolaev Igor1961-59391MiAaPQMiAaPQMiAaPQBOOK9910539691103321Noncommutative geometry2617932UNINA