02270nam0 2200481 i 450 VAN0012738520240806100823.960N978981133516720200309d2019 |0itac50 baengSG|||| |||||Survival Analysis with Correlated EndpointsJoint Frailty-Copula ModelsTakeshi Emura, Shigeyuki Matsui, Virginie RondeauSingaporeSpringer2019xvii, 118 p.ill.24 cm001VAN001139682001 SpringerBriefs in Statistics. JSS research series in statistics210 Berlin [etc.]Springer2015-VAN00237145Survival Analysis with Correlated Endpoints173456062-XXStatistics [MSC 2020]VANC022998MF62HxxMultivariate analysis [MSC 2020]VANC026440MF62N01Censored data models [MSC 2020]VANC030962MF62N05Reliability and life testing [MSC 2020]VANC021560MF62P10Applications of statistics to biology and medical sciences; meta analysis [MSC 2020]VANC024649MF92B15General Biostatistics [MSC 2020]VANC026442MFCompeting risksKW:KCompound CovariateKW:KCox RegressionKW:KKendall’s TauKW:KMeta-analysisKW:KSemi-Competing RiskKW:KSurrogate EndpointKW:KSGSingaporeVANL000061EmuraTakeshiVANV096576767963MatsuiShigeyukiVANV095585781819RondeauVirginieVANV098838782108Springer <editore>VANV108073650ITSOL20241115RICAhttp://doi.org/10.1007/978-981-13-3516-7E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00127385BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 1870 08eMF1870 20200309 Survival Analysis with Correlated Endpoints1734560UNICAMPANIA05709nam 22007095 450 991052255640332120251113205814.03-030-92544-710.1007/978-3-030-92544-4(MiAaPQ)EBC6882415(Au-PeEL)EBL6882415(CKB)21069299600041(PPN)260829102(OCoLC)1295702206(DE-He213)978-3-030-92544-4(EXLCZ)992106929960004120220203d2022 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFurnace Tapping 2022 /edited by Joalet D. Steenkamp, Dean Gregurek, Quinn G. Reynolds, Gerardo Alvear Flores, Hugo Joubert, Phillip J. Mackey1st ed. 2022.Cham :Springer International Publishing :Imprint: Springer,2022.1 online resource (391 pages)The Minerals, Metals & Materials Series,2367-1696Print version: Steenkamp, Joalet D. Furnace Tapping 2022 Cham : Springer International Publishing AG,c2022 9783030925437 Intro -- Preface -- Contents -- About the Editors -- Part I Session I -- 1 Controlled Tapping-The Research Project -- 2 MIRS Robotic Tapping and Plugging of Non-ferrous Smelting Furnaces -- 3 Theoretical Framework and Practical Recommendations for Proper Thermal Lance Use and Selection -- 4 Data Analysis to Assess Carry-Over Slag -- 5 An Overview of Submerged Arc Furnaces Tapping Operations and Tap-Hole Management at Assmang Manganese Cato Ridge Works -- 6 Aluminium Tapping and Molten Metal Handling in Primary Smelters -- Part II Session II -- 8 Furnace Tapping 101 -- 9 CFD Study on Continuous Tapping of Silicon -- 10 Reduced-Order Models of Furnace Tapping Systems-A Case Study from a Submerged Arc Furnace Producing Silicomanganese -- 11 Tapped Alloy Mass Prediction Using Data-Driven Models with an Application to Silicomanganese Production -- 12 Slag Reduction and Viscosities Interaction in Ferromanganese Process -- 13 Lab-Scale Physical Model Experiments to Understand the Effect of Particle Bed on Tapping Flow Rates -- 14 The Interaction of Slag and Carbon on the Electrical Properties -- 15 Electrical Resistivity of Transformed Carbon Materials in the Silicon Furnace -- Part III Session III -- 16 PGM, Nickel, and Copper Tapping: An Updated Industry Survey -- 17 Kansanshi Copper Smelter ISACONVERT™ Furnace Tapping System Design, Operation, and Improvements -- 18 Successful Development and Optimisation of Lead ISASMELT™ Furnace Slag Tapping System at Kazzinc Ltd. -- 19 Simulation-Based Approaches for Optimized Tap-Hole Design -- Part IV Session IV -- 20 Tap-Hole Refractory Issues and Remedies -- 21 Sensor Technologies for Optimized Tapping Procedures -- 22 The Evaluation of Chemical Wear of Carbon-Based Tap-Hole Refractories in Ferrochrome Production.23 Investigation of Melting Behavior and Viscosity of Slags from Secondary Ferromanganese Production -- 24 Metal and Slag Extraction from Different Zones of a Submerged Arc Furnace with Non-uniform Porous Bed Using CFD -- 25 Tapblock Refractory Wear Monitoring and Hearth Refractory Design Optimization in Metallurgical Furnaces -- 26 Slide Gate Technology for Slag Tapping -- 27 Tap-Hole Clay Technologies for Ferroalloy Reduction Furnaces -- 28 Health-Friendly Plugging Repair Pastes -- Author Index -- Subject Index.No pyrometallurgical smelter can operate without some form of tapping system. It is the one thing all smelters have in common. This collection discusses this meeting point of the science, technology, and skill involved in this process. The tap-hole design process includes a set of design criteria, which need to be revised as the results of laboratory, computational fluid dynamics (CFD), and time-and-motion studies become available. The tap-hole life cycle is considered in this volume, with authors addressing the requirements for installation and operability as well as for maintenance. Matters such as online monitoring of the tap-hole wear, handling of liquid products, and extraction of fumes are all discussed. Although much has been done to make the tapping process as automatic as possible, tapping of smelters cannot be done without labor. Tap floor operators work in harsh environments where safety is of utmost importance. Selection of suitable personnel and intensive training is required and is discussed in this collection.The Minerals, Metals & Materials Series,2367-1696Industrial engineeringProduction engineeringFluid mechanicsMaterialsMaterials scienceIndustrial and Production EngineeringEngineering Fluid DynamicsMaterials EngineeringProcess EngineeringMaterials ScienceIndustrial engineering.Production engineering.Fluid mechanics.Materials.Materials science.Industrial and Production Engineering.Engineering Fluid Dynamics.Materials Engineering.Process Engineering.Materials Science.666.72621.4025Steenkamp Joalet D.MiAaPQMiAaPQMiAaPQBOOK9910522556403321Furnace Tapping 20222597004UNINA