04783nam 2200649Ia 450 991051143530332120170814165624.01-283-39621-197866133962110-08-096241-6(CKB)2670000000174551(EBL)892219(OCoLC)793510889(SSID)ssj0000640056(PQKBManifestationID)12245468(PQKBTitleCode)TC0000640056(PQKBWorkID)10611404(PQKB)11566662(MiAaPQ)EBC892219(PPN)166883824(EXLCZ)99267000000017455120120607d1996 uy 0engur|n|---|||||txtccrPrinciples of electron opticsVolume 1Basic geometry optics[electronic resource] /by P.W. Hawkes and E. KasperLondon ;San Diego Academic Pressc19961 online resource (665 p.)Description based upon print version of record.0-12-333341-5 Includes bibliographical references and index.Front Cover; Basic Geometrical Optics; Copyright Page; Contents; Preface; Chapter 1 Introduction; 1.1 Organization of the subject; 1.2 History; PART I - CLASSICAL MECHANICS; Chapter 2. Relativistic Kinematics; 2.1 The Lorentz equation and general considerations; 2.2 Conservation of energy; 2.3 The acceleration potential; 2.4 Definition of coordinate systems; 2.5 Conservation of axial angular momentum; Chapter 3. Different Forms of Trajectory Equations; 3.1 Parametric representation in terms of the arc-length; 3.2 Relativistic proper-time representation; 3.3 The cartesian representation3.4 Scaling rulesChapter 4. Variational Principles; 4.1 The Lagrange formalism; 4.2 General rotationally symmetric systems; 4.3 The canonical formalism; 4.4 The time-independent form of the variational principle; 4.5 Static rotationally symmetric systems; Chapter 5. Hamiltonian Optics; 5.1 Introduction of the characteristic function; 5.2 The Hamilton-Jacobi equation; 5.3 The analogy with light optics; 5.4 The influence of vector potentials; 5.5 Gauge transformations; 5.6 Poincarés integral invariant; 5.7 The problem of uniqueness; 5.8 Résumé; PART II - CALCULATION OF STATIC FIELDSChapter 6. Basic Concepts and Equations6.1 General considerations; 6.2 Field equations; 6.3 Variational principles; 6.4 Rotationally symmetric fields; 6.5 Planar fields; Chapter 7. Series Expansions; 7.1 Azimuthal Fourier series expansions; 7.2 Radial series expansions; 7.3 Rotationally symmetric fields; 7.4 Multipole fields; 7.5 Planar fields; 7.6 Fourier-Bessel series expansions; Chapter 8. Boundary-Value Problems; 8.1 Boundary-value problems in electrostatics; 8.2 Boundary conditions in magnetostatics; 8.3 Examples of boundary-value problems in magnetostatics; Chapter 9. Integral Equations9.1 Integral equations for scalar potentials9.2 Problems with interface conditions; 9.3 Reduction of the dimensions; 9.4 Important special cases; 9.5 Résumé; Chapter 10. The Boundary-Element Method; 10.1 Evaluation of the Fourier integral kernels; 10.2 Numerical solution of one-dimensional integral equations; 10.3 Superposition of aperture fields; 10.4 Three-dimensional Dirichlet problems; 10.5 Examples of applications of the boundary-element method; Chapter 11. The Finite-Difference Method (FDM); 11.1 The choice of grid; 11.2 The Taylor series method; 11.3 The integration method11.4 Nine-point formulae11.5 Iterative solution techniques; Chapter 12. The Finite-Element Method (FEM); 12.1 Formulation for round magnetic lenses; 12.2 Formulation for self-adjoint elliptic equations; 12.3 Solution of the finite-element equations; 12.4 Improvement of the finite-element method; 12.5 Comparison and combination of different methods; Chapter 13. Field-Interpolation Techniques; 13.1 One-dimensional differentiation and interpolation; 13.2 Two-dimensional interpolation; PART III - THE PARAXIAL APPROXIMATION; Chapter 14. IntroductionChapter 15. Systems with an Axis of Rotational SymmetryPrinciples of Electron OpticsBasic geometry opticsElectron opticsElectronsElectronic books.Electron optics.Electrons.537.5/6537.56Hawkes P. W926027Kasper E(Erwin),1933-1066565MiAaPQMiAaPQMiAaPQBOOK9910511435303321Principles of electron optics2549444UNINA