10897nam 2200517 450 991050847830332120220722232350.03-030-81911-6(CKB)5470000001298834(MiAaPQ)EBC6795908(Au-PeEL)EBL6795908(OCoLC)1281584434(PPN)258302569(EXLCZ)99547000000129883420220722d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierNanostructured photocatalyst via defect engineering basic knowledge and recent advances /Vitaly GurylevCham, Switzerland :Springer,[2021]©20211 online resource (388 pages)3-030-81910-8 Intro -- Preface -- Acknowledgments -- About the Book -- Contents -- About the Author -- Chapter 1: Photocatalysis: Fundamentals -- 1.1 Introduction -- 1.2 Case Example I: Photocatalytic Degradation of Pollutants in Water -- 1.3 Case Example II: Photocatalytic and Photoelectrochemical Water Splitting -- 1.4 Case Example III: Photoconversion of CO2 -- 1.5 Case Example IV: Photocatalytic Nitrogen Fixation -- 1.6 Other Photocatalytic Reactions -- 1.6.1 Photocatalytic Reduction of Cr (VI) -- 1.6.2 Photocatalytic Reduction of Other Toxic and Nontoxic Metals -- 1.6.3 Photocatalytic Hydrogen Peroxide Production -- 1.6.4 Biomass Treatment: Photocatalytic Oxidation of Glucose -- 1.6.5 Several More Examples of Photocatalytic Reactions -- 1.7 Final Remarks on Photocatalysis -- References -- Chapter 2: General Principles of Defect Engineering -- 2.1 Introduction -- 2.2 Defect Engineering: Fundamentals -- 2.3 Point Defects -- 2.3.1 Brief Overview -- 2.3.2 Intrinsic and Extrinsic Defects: Difference and Particularities -- 2.3.3 Intrinsic Defects -- 2.3.3.1 Anion Vacancies -- 2.3.3.2 Cation Vacancies -- 2.3.4 Extrinsic Defects -- 2.3.4.1 Metal Doping -- 2.3.4.2 Non-metal Doping -- 2.4 Line Defects -- 2.5 Planar Defects -- 2.6 Volume Defects -- 2.7 Defects in Semiconductor Nanomaterials: Current Progress -- 2.7.1 General Methods to Produce Defects -- 2.7.2 Manipulation and Control of Defects -- 2.7.3 Materials Properties vs Defect Presence: Positive and Negative Sides -- 2.7.3.1 Positive Contribution of Defect Engineering -- 2.7.3.2 Negative Contribution of Defect Engineering -- 2.7.4 Current Challenges and Future Perspectives -- 2.8 Final Remarks on Defect Engineering -- References -- Chapter 3: Bulk vs Surface Defects -- 3.1 Introduction -- 3.2 Bulk Defects -- 3.3 Surface Defects -- 3.4 Distribution, Concentration, and Diffusion of Defects: Why Is It Important.3.4.1 Distribution of Defects -- 3.4.2 Concentration of Defects -- 3.4.3 Diffusion of Defects -- 3.5 Defect Engineering of 0-D, 1-D, 2-D, and 3-D Materials -- 3.5.1 Brief Overview -- 3.5.2 Defects in 0-D Materials -- 3.5.3 Defects in 1-D Materials -- 3.5.4 Defects in 2-D Materials -- 3.5.5 Defects in 3-D Materials -- 3.6 Final Remarks on Defect Localization -- References -- Chapter 4: Analysis of Defects -- 4.1 Introduction -- 4.2 Electron Microscopy, Surface Scan, and Visualization Techniques -- 4.2.1 Transmission Electron Microscopy -- 4.2.2 Scanning Probe Microscopy (SPM) -- 4.2.2.1 Brief Overview of SPM Techniques -- 4.2.2.2 Scanning Tunneling Microscopy (STM) -- 4.2.2.3 Atomic Force Microscopy (AFM) -- 4.2.2.4 Kelvin Probe Force Microscopy (KPFM) -- 4.2.2.5 Conductive Force Microscopy (C-AFM) -- 4.2.3 Another Microscopy Analysis -- 4.3 Spectroscopy Techniques -- 4.3.1 Electron Paramagnetic Resonance (EPR) -- 4.3.2 Positron Annihilation Spectroscopy (PAS) -- 4.3.3 X-ray Photoelectron Spectroscopy (XPS) -- 4.3.4 Valence Band X-ray photoelectron spectroscopy (VBXPS) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Raman Spectroscopy -- 4.3.6.1 Brief Overview -- 4.3.6.2 Non-resonance Raman Spectroscopy -- 4.3.6.3 Resonance Raman Spectroscopy -- 4.3.7 Photoluminescence (PL) and Cathodoluminescence (CL) Spectroscopies -- 4.3.8 Transient Absorption Spectroscopy (TAS) -- 4.3.9 X-ray Absorption Spectroscopy (XAS) -- 4.4 X-ray Diffraction Analysis (XRD) -- 4.5 Other Analyzing Techniques -- 4.6 Final Remarks on Various Analysis Tools and Methods -- References -- Chapter 5: Case Study I Defect Engineering of TiO2 -- 5.1 TiO2: Fundamentals -- 5.2 Intrinsic Defects in TiO2 -- 5.2.1 Introduction -- 5.2.2 Defect Chemistry of TiO2 -- 5.2.2.1 Brief Overview -- 5.2.2.2 Oxygen Vacancies -- 5.2.2.3 Titanium Vacancies -- 5.2.2.4 Titanium Interstitials.5.2.2.5 Oxygen Interstitials -- 5.2.3 How to Create Defects? -- 5.2.3.1 Hydrogenation -- 5.2.3.2 High-Energy Particles Bombardment -- 5.2.3.3 Thermal Treatment in Reducing Atmosphere -- 5.2.3.4 Vapor-Phase Synthesis -- 5.2.3.5 Chemical-Based Approaches -- 5.2.3.6 Electrochemical Methods -- 5.2.3.7 Mechanical Methods -- 5.2.3.8 Alternative Methods -- 5.2.3.9 Influence of TiO2 Crystallinity and Phase on the Formation of Defects -- 5.2.4 Properties of Defective TiO2 -- 5.2.4.1 Structural Properties -- 5.2.4.2 Optical Properties -- 5.2.4.3 Chemical Modifications -- 5.2.4.4 Electronic Properties -- 5.2.4.5 Electrical Properties -- 5.2.4.6 Other Properties -- 5.2.5 Defective TiO2 via Theoretical Simulations -- 5.2.5.1 Various Simulation Models and Their Outcome -- 5.2.5.2 Comparison with Real Experimental Studies -- 5.2.5.3 Current Challenges -- 5.2.6 Application of Defective TiO2 as Photocatalyst -- 5.2.6.1 Brief Overview -- 5.2.6.2 Photocatalytic and Photoelectrochemical Water Splitting -- 5.2.6.3 Light-Induced Water Purification -- 5.2.6.4 Photoconversion of CO2 -- 5.2.6.5 Other Applications -- 5.2.6.6 Current Challenges and Future Perspectives -- 5.2.7 Amorphous TiO2: Alternative to Defective TiO2 -- 5.2.7.1 Introduction: Amorphous TiO2 vs Crystalline TiO2 -- 5.2.7.2 How to Fabricate Amorphous TiO2: Morphology-Controlled Synthesis -- 5.2.7.3 Properties of Amorphous TiO2 -- 5.2.7.4 Application of Amorphous TiO2 as Photocatalyst -- 5.3 Final Remarks About Defective TiO2 -- References -- Chapter 6: Case Study II: Defect Engineering of ZnO -- 6.1 ZnO: Fundamentals -- 6.2 Intrinsic Defects in ZnO -- 6.2.1 Introduction -- 6.2.2 Defect Chemistry of ZnO -- 6.2.2.1 Brief Overview -- 6.2.2.2 Oxygen vs Zinc Vacancies: Particularities in Electronic and Geometrical Configurations -- 6.2.3 How to Create Defects -- 6.2.3.1 Hydrogenation.6.2.3.2 High-Energy Particles Bombardment -- 6.2.3.3 Treatment in Reduced Atmosphere -- 6.2.3.4 Vapor Phase Synthesis -- 6.2.3.5 Chemical-Based Approaches -- 6.2.3.6 Electrochemical Methods -- 6.2.3.7 Mechanical Methods -- 6.2.3.8 Crystallinity, Size, and Dimension of ZnO vs Formation of Defects -- 6.2.4 Properties of Defective ZnO -- 6.2.4.1 Structural Properties -- 6.2.4.2 Optical Properties -- 6.2.4.3 Electronic Properties -- 6.2.4.4 Electrical Properties -- 6.2.4.5 Other Properties -- 6.2.5 Application of Defective ZnO as Photocatalyst -- 6.2.5.1 Brief Overview -- 6.2.5.2 Photocatalytic and Photoelectrochemical Water Splitting -- 6.2.5.3 Light-Induced Water Purification -- 6.2.5.4 Photoconversion of CO2 -- 6.2.5.5 Antibacterial and Antimicrobial Applications -- 6.2.5.6 Other Applications -- 6.2.5.7 Current Challenges and Future Perspectives -- 6.3 Final Remarks About Defective ZnO -- References -- Chapter 7: Case Study III: Defect Engineering of Ta2O5, Ta3N5, and TaON -- 7.1 Ta2O5, Ta3N5, and TaON: Fundamentals -- 7.2 Intrinsic Defects in Ta2O5, Ta3N5, and TaON -- 7.2.1 Introduction -- 7.2.2 Defects in Oxide, Nitrides, and Oxynitrides: What Is Difference -- 7.2.2.1 Brief Overview -- 7.2.2.2 Defects in Ta2O5 -- 7.2.2.3 Defects in Ta3N5 -- 7.2.2.4 Defects in TaON -- 7.2.3 How to Create Defects -- 7.2.3.1 Ta2O5 -- 7.2.3.2 TaN5 -- 7.2.3.3 TaON -- 7.2.4 Properties of Defective Ta2O5, Ta3N5, and TaON -- 7.2.4.1 Structural Properties -- 7.2.4.2 Optical Properties -- 7.2.4.3 Electronic Properties -- 7.2.4.4 Electrical Properties -- 7.2.5 Application of Defective Ta2O5, Ta3N5, and TaON as Photocatalyst -- 7.2.5.1 Brief Overview -- 7.2.5.2 Photocatalytic and Photoelectrochemical Water Splitting -- 7.2.5.3 Light-Induced Water Purification -- 7.2.5.4 Photoconversion of CO2 -- 7.2.5.5 Current Challenges and Future Perspectives.7.3 Final Remarks About Defective Ta2O5, Ta3N5, and TaON -- References -- Chapter 8: Case Study IV: Defect Engineering of MoS2 and WS2 -- 8.1 MoS2 and WS2: Fundamentals -- 8.2 Intrinsic Defects in MoS2 and WS2 -- 8.2.1 Introduction -- 8.2.2 Defects in MoS2 -- 8.2.3 Defects in WS2 -- 8.2.4 How to Create Defects -- 8.2.4.1 Exfoliation -- 8.2.4.2 Vapor Phase Synthesis -- 8.2.4.3 Hydrothermal Method -- 8.2.4.4 Other Methods -- 8.2.5 Properties of Defective MoS2 and WS2 -- 8.2.5.1 Structural Properties -- 8.2.5.2 Optical Properties -- 8.2.5.3 Electronic Properties -- 8.2.5.4 Electrical Properties -- 8.2.6 Application of Defective MoS2 and WS2 as Photocatalyst -- 8.2.6.1 Brief Overview -- 8.2.6.2 Photocatalytic and Photoelectrochemical Water Splitting -- 8.2.6.3 Light-Induce Water Purification -- 8.2.6.4 Photoconversion of CO2 -- 8.2.6.5 Other Applications -- 8.2.6.6 Current Challenges and Future Perspectives -- 8.3 Final Remarks About Defective MoS2 and WS2 -- References -- Chapter 9: Defect Engineering of Other Nanostructured Semiconductors -- 9.1 Introduction -- 9.2 Methods to Introduce Intrinsic Defects: Recent Trends and Future Perspectives -- 9.3 Defect-Controlled Properties: Tuning and Adjustment -- 9.4 Defective Nanostructures: Examples -- 9.4.1 Brief Overview -- 9.4.2 Case Example I: g-C3N4 -- 9.4.2.1 g-C3N4: Fundamentals -- 9.4.2.2 How to Create Defects -- 9.4.2.3 Properties of Defective g-C3N4 -- 9.4.2.4 Photocatalytic Application of Defective g-C3N4 -- 9.4.3 Case Example II: WO3 -- 9.4.3.1 WO3: Fundamentals -- 9.4.3.2 How to Create Defects -- 9.4.3.3 Properties of Defective WO3 -- 9.4.3.4 Photocatalytic Application of Defective WO3 -- 9.4.4 Case Example III: CuO and Cu2O -- 9.4.4.1 CuO and Cu2O: Fundamentals -- 9.4.4.2 How to Create Defects -- 9.4.4.3 Properties of Defective CuO and Cu2O.9.4.4.4 Photocatalytic Application of Defective CuO and Cu2O.PhotocatalysisNanostructured materialsCatalystsMaterialsPhotocatalysis.Nanostructured materials.CatalystsMaterials.541.395Gurylev Vitaly1073331MiAaPQMiAaPQMiAaPQBOOK9910508478303321Nanostructured Photocatalyst Via Defect Engineering2569485UNINA01564nas 2200457-a 450 99620637150331620230222213018.01678-4677(DE-599)ZDB2078802-2(OCoLC)60638357(CKB)110978978374499(CONSER)--2009263016(EXLCZ)9911097897837449920050615b19762007 s-- -porurun|||||||||txtrdacontentcrdamediacrrdacarrierFitopatologia brasileiraBrasilia Sociedade Brasileira de FitopatologiaRefereed/Peer-reviewedIssues for <março 1991>- have additional English title: Brazilian phytopathology.0100-4158 Publishes technical and scientific articles that describe original research in the area of Plant Pathology that may contribute significantly to its progress, in Portuguese, English or Spanish.Brazilian phytopathologyFitopatol. brasFITOPATOL. BRASPlant diseasesPeriodicalsPlant diseasesBrazilPeriodicalsPlant diseasesfast(OCoLC)fst01065378BrazilfastPeriodicals.fastPlant diseasesPlant diseasesPlant diseases.Sociedade Brasileira de Fitopatologia.JOURNAL996206371503316Fitopatologia Brasileira795415UNISA