11171nam 2200553 450 991050640150332120220715134603.0981-16-1892-5(CKB)5340000000068383(MiAaPQ)EBC6789904(Au-PeEL)EBL6789904(OCoLC)1280462929(PPN)258299800(EXLCZ)99534000000006838320220715d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierHandbook on synthesis strategies for advanced materialsVolume-IIIMaterials specific synthesis strategies /A. K. Tyagi, Raghumani S. Ningthoujam, editorsSingapore :Springer,[2021]©20211 online resource (921 pages)Indian Institute of Metals Series,2509-6419981-16-1891-7 Intro -- Series Editor's Preface -- Preface -- Contents -- About the Editors -- 1 High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations -- 1.1 Introduction -- 1.2 PC Constituents and Their Modification -- 1.2.1 Fillers -- 1.2.2 Polymer Matrix -- 1.2.3 Interface in Composites -- 1.3 Fabrication, Assembly, and Processing of Composites -- 1.4 Composites and Their Applications -- 1.5 Smart Composites -- 1.6 Outlook and Future Trends -- References -- 2 Synthesis of Advanced Nanomaterials for Electrochemical Sensor and Biosensor Platforms -- 2.1 Introduction -- 2.2 Nanomaterials and Nanostructures Relevant to Electrochemical Sensing -- 2.3 Noble Metal Nanomaterials -- 2.3.1 Gold Nanoparticles -- 2.3.2 Platinum Nanoparticles -- 2.3.3 Silver Nanoparticles -- 2.3.4 Palladium Nanoparticles -- 2.4 Metal Oxide Nanomaterials -- 2.5 Carbon-Based Nanomaterial Modified Electrodes -- 2.5.1 Carbon Nanotubes -- 2.5.2 Single-Walled Carbon Nanotubes -- 2.5.3 Multi-walled Carbon Nanotubes -- 2.5.4 Carbon Nanohorns -- 2.5.5 Fullerene -- 2.5.6 Graphene -- 2.6 Conducting Polymer Nanomaterials -- 2.6.1 Polypyrrole -- 2.6.2 Polythiophene -- 2.6.3 Polyaniline (PANI) -- 2.7 Conclusions and Outlook -- References -- 3 Synthesis of Noble Gas Compounds: Defying the Common Perception -- 3.1 Introduction -- 3.2 Discovery of Noble Gases -- 3.3 Reactivity of Noble Gases and Discovery of First Noble Gas Compound -- 3.4 Initial Progress in the Synthesis of Other Xenon Compounds -- 3.5 Synthesis of Compounds of Noble Gases -- 3.6 Missing Xenon Paradox -- 3.7 Summary and Outlook -- References -- 4 Synthesis of Inorganic Fluorides -- 4.1 Introduction -- 4.2 Fluorine -- 4.3 Hydrogen Fluoride -- 4.4 Inorganic Fluorides and Oxyfluorides -- 4.4.1 Fluorides of Metals -- 4.4.2 Binary Fluorides -- 4.4.3 Nonmetal Fluorides.4.4.4 Complex Fluorides -- 4.4.5 Oxyfluorides -- 4.5 Preparative Strategies -- 4.5.1 Fluorinating Reagents and Common F− Ion Sources -- 4.5.2 Materials Compatibility -- 4.5.3 Toxicological Effects -- 4.6 General Preparation Chemistry -- 4.6.1 Gas-Gas -- 4.6.2 Liquid/Solid-Gas -- 4.6.3 Solid/Liquid-Liquid -- 4.6.4 Solid-Solid -- 4.6.5 Fluorides of Cations with Unusual Oxidation State -- 4.7 Representative Examples -- 4.8 Summary and Conclusions -- References -- 5 Synthesis of Materials with Unusual Oxidation State -- 5.1 Introduction -- 5.2 Oxidation States -- 5.3 Unusual Oxidation States -- 5.4 Preparation and Stabilization of Materials with Unusual Oxidation States -- 5.5 Preparation Strategies for Materials with Unusual Oxidation States -- 5.5.1 High Temperature Reactions -- 5.5.2 High Pressure and High Temperature Reactions -- 5.5.3 Reaction at Lower or Moderate Temperature and Stepwise Reactions -- 5.5.4 Electrochemical Reactions -- 5.5.5 Electron or γ-radiation-Induced Redox Reactions -- 5.6 Conclusions -- References -- 6 Up-Converting Lanthanide Ions Doped Fluoride Nanophosphors: Advances from Synthesis to Applications -- 6.1 Introduction -- 6.2 Luminescence from Lanthanides Ions -- 6.2.1 Lanthanides -- 6.2.2 Origin of Luminescence -- 6.2.3 Photo-Physical Mechanism -- 6.3 Photoluminescence Measurement Technique -- 6.3.1 Instrumentation -- 6.3.2 Photoluminescence Measurement -- 6.4 Critical Factors that Influence Luminescence Characteristics -- 6.4.1 Choice of Activator -- 6.4.2 Choice of Sensitizer -- 6.4.3 Choice of a Host Material -- 6.4.4 Doping Concentration -- 6.4.5 Morphology -- 6.4.6 Crystal Structure -- 6.5 Controlled Preparation of Up-Converting Fluoride-Based Nanophosphors -- 6.5.1 Nucleation and Growth -- 6.5.2 Synthesis Methods -- 6.6 Critical Parameters that Influence Morphology and Phase -- 6.6.1 Reaction Temperature and Time.6.6.2 Ligand, additives, and Solvents -- 6.6.3 Precursor Salts -- 6.6.4 PH Parameter -- 6.6.5 Incorporation of Foreign Species -- 6.7 Applications -- 6.7.1 Bio-Imaging -- 6.7.2 Tumor Targeting -- 6.7.3 Energy Harvesting -- 6.7.4 Temperature Sensing -- 6.7.5 Anti-counterfeiting -- 6.8 Conclusions -- References -- 7 Synthesis and Characterization of Quantum Cutting Phosphor Materials -- 7.1 Introduction -- 7.2 Quantum Cutting Mechanism -- 7.3 Synthesis Methods -- 7.3.1 Combustion Method -- 7.3.2 Sol-gel Method -- 7.3.3 Hydrothermal Method -- 7.3.4 Hot-Injection Method -- 7.3.5 Solid-State Reaction Method -- 7.3.6 Melting-Quenching Method -- 7.4 Characterization of Quantum Cutting Phosphors -- 7.4.1 Photoluminescence (Excitation and Emission) -- 7.4.2 Laser Power Dependent Photoluminescence Intensity -- 7.4.3 Lifetime Characteristics -- 7.5 Conclusions -- 7.6 Future Scope -- References -- 8 Synthesis, Characterization, Physical Properties and Applications of Metal Borides -- 8.1 Introduction -- 8.2 Synthesis and Characterization -- 8.2.1 High-Temperature Synthesis (Above 1000 °C) Using Pure Metal Powder and Boron Powder in Inert Atmosphere or Vacuum by Solid-State Reaction -- 8.2.2 Electrolysis Process in Molten Salts -- 8.2.3 Reduction of Metal Oxides/Halides with Boron in Presence of Carbon/Aluminum/Magnesium -- 8.2.4 Reduction of Metal Oxides with Boron Carbide -- 8.2.5 Self-propagating High-Temperature Synthesis (SHS) -- 8.2.6 Mechano-Chemically Assisted Preparation -- 8.2.7 Reduction Process of Metal Salts with Borohydrides (LiBH4, NaBH4, KBH4) -- 8.2.8 Deposition from a Reactive Vapor Phase (Thin Films or Single Crystals or Polycrystals) -- 8.2.9 Single-Source Precursor Route -- 8.2.10 Nanostructure Formation in 0D, 1D, 2D and 3D Ways -- 8.3 Physical Properties -- 8.3.1 Magnetism -- 8.3.2 Electronic Structure -- 8.3.3 Electrical Resistivity.8.3.4 Optics -- 8.4 Applications -- 8.4.1 Catalyst -- 8.4.2 Superconducting Materials -- 8.4.3 Coating Materials to Improve Mechanical Properties (Hardness, Corrosion Resistance, Wear Resistance) -- 8.4.4 Metallic Ceramics Materials -- 8.4.5 Magnetic Materials -- 8.4.6 Brightness in Electron Microscopy and Monochromator for Synchrotron Radiation -- 8.4.7 Other Hybrids/Composites of Borides for Applications -- 8.5 Conclusions -- References -- 9 Synthesis and Applications of Borides, Carbides, Phosphides, and Nitrides -- 9.1 Introduction -- 9.2 Synthesis Methods of Nitrides -- 9.2.1 Interaction of N2 Gas with the Metal Powder or Film at Elevated Temperature -- 9.2.2 Interaction of NH3 Gas with the Metal Powder or Film or Oxides or Sulphides or Halides at Elevated Temperature -- 9.2.3 Decomposition of Single Source Precursor Containing Metal-Nitrogen Link -- 9.2.4 Use of Urea/Azide and Reductant Precursor -- 9.2.5 Use of Hard Template Having Nitrogen Source -- 9.2.6 Epitaxial Growth of Nanowires or Nanorods on Substrate -- 9.2.7 In the Form of Thin Film Formation and Coating -- 9.2.8 In the Form of Single Crystals -- 9.2.9 Mesoporous Metal Nitrides -- 9.2.10 Metathesis Reaction -- 9.2.11 Layered Nitrides -- 9.2.12 Mechanical Transfer of Metal Nitrides Grown on a Substrate to Another Substrate -- 9.2.13 Formation of Heterostructure Types -- 9.2.14 Formation of Advanced Ceramic Materials of Borides, Carbides, and Nitrides at Low Temperature -- 9.2.15 Formation of Different Phases of Nitrides, Carbides, Oxy-Carbides/Nitrides, and Borides Under High Pressure and Temperature -- 9.2.16 Formation of Different Phases of Nitrides Under Sudden Cooling and Tempering -- 9.2.17 Formation of Nanotubes -- 9.2.18 Formation of Different Sizes and Shapes -- 9.2.19 Electrochemical Route -- 9.2.20 Deposition of Prepared Nitrides on Substrate.9.2.21 Supercritical Fluid Ammonia or Solvothermal or Ammono-Thermal Route -- 9.2.22 Self-propagating High Temperature Synthesis -- 9.3 Synthesis Methods of Carbides -- 9.3.1 Carbo-Thermal Route -- 9.3.2 Carbo-Thermic Reduction Route -- 9.3.3 Carburisation Route -- 9.3.4 Microwave Route -- 9.3.5 Hydrothermal or Solvothermal Route -- 9.3.6 Self-propagating High Temperature Synthesis Route -- 9.3.7 Thin Film -- 9.3.8 Single Crystals -- 9.3.9 Preparation of Nanostructured Carbides (0D, 1D, 2D, and 3D) -- 9.3.10 Sol-gel Approach -- 9.3.11 Preparation of Carbides Under Pressure -- 9.4 Synthesis Methods of Phosphides -- 9.4.1 Direction Reaction Between Metal or Non-metal and Phosphorus -- 9.4.2 Reaction Between Metal Salt or Complex and PH3/H2 Mixture -- 9.4.3 Reaction Between Metal Salt and Hypophosphite -- 9.4.4 Reaction Between Metal Salt and Phosphorous Acid (H3PO3) -- 9.4.5 H2 Plasma Reduction -- 9.4.6 Reaction of Metal Salts with Organic Compounds of Phosphorous -- 9.4.7 Metathesis Reactions -- 9.4.8 Solvothermal Reaction -- 9.4.9 Different Sizes and Shapes of Nanoparticles (0D, 1D, 2D, 3D) -- 9.4.10 Thin Film Technique -- 9.5 Synthesis Methods of Borides -- 9.6 Applications -- 9.6.1 Electronics -- 9.6.2 Catalysts -- 9.6.3 Optical Materials -- 9.6.4 Materials on Basis of Mechanical Properties -- 9.6.5 Biomaterials -- 9.6.6 Ultra-High Temperature Ceramic Materials -- 9.6.7 Coloring Materials -- 9.6.8 Materials for Battery, Fuel Cells, Capacitor, Sensors -- 9.6.9 Magnetic Materials -- 9.6.10 Miscellaneous Applications -- 9.7 Conclusions -- References -- 10 Synthesis Methods for Carbon-Based Materials -- 10.1 Introduction -- 10.2 Synthesis of Graphite -- 10.3 Synthesis of Diamond -- 10.3.1 High Pressure and High Temperature (HPHT) -- 10.3.2 Chemical Vapor Deposition -- 10.3.3 Other Methods -- 10.4 Synthesis of Fullerene -- 10.4.1 Soot Method.10.4.2 Chemical Vapor Deposition.Indian Institute of Metals series.Nanostructured materialsSynthesisSynthetic productsMaterialsNanostructured materialsSynthesis.Synthetic products.Materials.620.115Tyagi A. K.Dr.,Ningthoujam Raghumani S.MiAaPQMiAaPQMiAaPQBOOK9910506401503321Handbook on Synthesis Strategies for Advanced Materials1961296UNINA