10850nam 22004693 450 991049710630332120210901203631.03-030-82099-8(CKB)4100000011990252(MiAaPQ)EBC6684875(Au-PeEL)EBL6684875(EXLCZ)99410000001199025220210901d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierExplainable AI and Other Applications of Fuzzy Techniques Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processing Society, NAFIPS 2021Cham :Springer International Publishing AG,2021.©2022.1 online resource (519 pages)Lecture Notes in Networks and Systems Ser. ;v.2583-030-82098-X Intro -- Explainability: New Application and New Promise of Fuzzy Techniques -- Contents -- A Fuzzy Logic Approach for Spacecraft Landing Site Selection -- 1 Introduction -- 2 Image Dataset -- 3 Methodology -- 3.1 Image Size Reduction -- 3.2 Object Grouping -- 3.3 Object Classification -- 3.4 Performance Metrics -- 4 Results -- 5 Conclusions and Future Work -- 5.1 Future Work -- References -- Takagi-Sugeno Fuzzy Systems with Triangular Membership Functions as Interpretable Neural Networks -- 1 Introduction -- 2 Preliminaries -- 2.1 Fuzzy Systems -- 2.2 Neural Networks -- 3 Equivalence Between TS Fuzzy Systems with Triangular Membership And Neural Networks with ReLU Activation -- 3.1 TS Fuzzy Systems Expressed in Terms of ReLU Functions -- 3.2 TS Fuzzy Systems as Neural Networks with ReLU Activation -- 3.3 Neural Networks Expressed in Terms of Takagi-Sugeno Fuzzy Systems -- 4 Conclusions -- References -- A Study on Constrained Interval Arithmetic -- 1 Introduction -- 2 Constrained Interval Arithmetic -- 2.1 Addition in CIA -- 2.2 Difference in CIA -- 2.3 Multiplication in CIA -- 2.4 Division in CIA -- 2.5 Additive/Multiplicative Inverse in CIA -- 3 Distributivity, Expression/component-Wise and Optimization -- 4 Inclusion Isotonicity -- 5 Final Remarks -- References -- Fuzzy Classification of Multi-intent Utterances -- 1 Introduction -- 2 Related Work -- 3 Utterance Level Fuzzy Memberships -- 3.1 Membership Functions -- 3.2 Parameter Generation -- 4 Single Intent to Multi Intent Utterances -- 5 Fuzzy Membership Aggregation and Defuzzification -- 6 Experiments -- 6.1 Setup -- 6.2 Data -- 6.3 Training Details -- 6.4 Results -- 7 Conclusion -- References -- How Much for a Set: General Case of Decision Making Under Set-Valued Uncertainty -- 1 Decision Making Under Set-Valued Uncertainty: Formulation of the Problem.2 What Is Known: Cases of Closed Intervals and Closed Sets -- 3 Extending the Known Result to General Bounded Sets -- 4 What if We Do Not Require Additivity? -- Reference -- A Deep Fuzzy Semi-supervised Approach to Clustering and Fault Diagnosis of Partially Labeled Semiconductor Manufacturing Data -- 1 Introduction -- 2 Methodology -- 2.1 Deep Convolutional Unsupervised Feature Learning -- 2.2 PCA-Based Semi-supervised Fault Classification -- 2.3 Fuzzy c-means Clustering and Borderline Case Detection -- 3 Results -- 3.1 Case Study Description -- 3.2 Semi-supervised Classification Results -- 3.3 Fuzzy c-means Clustering Results -- 4 Discussion -- 5 Conclusion -- References -- Why Fuzzy Techniques in Explainable AI? Which Fuzzy Techniques in Explainable AI? -- 1 Why Fuzzy Techniques in Explainable AI -- 2 Which Fuzzy Techniques in Explainable AI -- References -- Why Are Fuzzy and Stochastic Calculus Different? -- 1 Introduction -- 2 Introduction to Stochastic Equations and First Issues with Derivatives -- 3 Modes of Convergence -- 4 Convergence in Distribution -- 5 Is Weakening the Topology a Viable Solution? -- 6 Comparison with Fuzzy Calculus. Common Problems and Conclusion -- References -- A Genetic Fuzzy Approach for the Prediction of Heart Failure -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- COVID-19 Vaccination Priority Evaluation -- 1 Introduction -- 2 The Vaccination Priority Degree and Its Use -- 3 The Vaccination Priority Attribute Tree -- 4 Vaccination Priority Attribute Criteria -- 5 Logic Aggregation -- 6 Examples and Discussion -- 7 Conclusions -- References -- Comparing the Explainability and Performance of Reinforcement Learning and Genetic Fuzzy Systems for Safe Satellite Docking -- 1 Introduction -- 2 Background -- 3 Methodology -- 3.1 Run Time Assurance.3.2 Reinforcement Learning Approach -- 3.3 Genetic Fuzzy System Approach -- 3.4 Run Time Assurance Approach -- 3.5 Reward Function -- 4 Results -- 4.1 Training -- 4.2 Explainability -- 5 Conclusion -- References -- A Note on the KM Algorithm for Computing the Variance of an Interval Type-2 Fuzzy Set -- 1 Introduction and Motivation -- 2 Basics of Interval Type-2 Fuzzy Numbers -- 3 The KM Algorithm -- 3.1 a) KM Algorithm for Computing yl -- 3.2 b) KM Algorithm for Computing yr -- 4 Computing the Variance of F2(X) -- 5 Illustrative Examples -- 5.1 Trapezoidal IT2FS -- 5.2 Nonlinear IT2FS -- 6 Concluding Remarks -- References -- Estimating Fuzzy Possibility Functions for E-Commerce Decision Support -- 1 Introduction -- 2 Methodology -- 2.1 Data Experiments -- 2.2 Linguistic Pre-processing -- 2.3 Feature Extraction and Statistical Methods -- 2.4 Model Evaluation -- 3 Soft Business Function -- 4 Results -- 5 Final Remarks -- References -- Machine Learning to Augment the Fusion Process for Data Classification -- 1 Introduction -- 2 Dempster-Shafer Fusion -- 3 Q-Learning -- 3.1 Q-Learning Fundamentals -- 3.2 Dempster-Shafer Fusion Calculus Integrated into Q-Learning -- 4 Experiments -- 5 Conclusions and Future Research -- References -- Managing Uncertainty in Crowdsourcing with Interval-Valued Labels -- 1 Introduction -- 1.1 Uncertainties in Crowdsourcing -- 1.2 Previous Results and Motivations of This Study -- 2 Interval-Valued Labels and Their Properties -- 2.1 An Interval-Valued Label and Its Properties -- 2.2 Statistic and Probabilistic Properties of a Set of IVLs on the Same xi -- 3 Methods for Pre-processing IVLs and Inference Making -- 3.1 Strategies on Pre-processing Li -- 3.2 Making an Inference from Li -- 4 Computational Experiments -- 4.1 Comparisons of Inferences with MV and Algorithm2 from the Same Li.4.2 Impacts of Biased IVLs on the Distribution of Matching Probability -- 5 Summary -- References -- Modeling Fuzzy Cluster Transitions for Topic Tracing -- 1 Introduction -- 2 Related Work -- 3 Modeling Cluster Transition with Fuzzy Logic -- 3.1 Crisp Cluster Transitions for Topic Tracing -- 3.2 Fuzzified Cluster Transitions -- 4 Implementation: Comparing Crisp and Fuzzy Cluster Transitions -- 5 Conclusion -- References -- A Natural Formalization of Changing-One's-Mind Leads to Square Root of ``Not'' and to Complex-Valued Fuzzy Logic -- 1 Formulation of the Problem -- 2 Analysis of the Problem and the Resulting Derivation of Square Root of ``Not" and of Complex-Valued Fuzzy Logic -- References -- Each Realistic Continuous Functional Dependence Implies a Relation Between Some Variables: A Theoretical Explanation of a Fuzzy-Related Empirical Phenomenon -- 1 Formulation of the Problem -- 2 Formalization of the Problem -- 3 Main Result -- 4 Auxiliary Result: Case of m=1 -- References -- Uniform Mixture Convergence of Continuously Transformed Fuzzy Systems -- 1 Rule-Based Probability Mixtures and XAI -- 2 Probability Structure of Additive Fuzzy Rule-Based Systems -- 3 Uniform Convergence of Mixtures of Transformed Fuzzy Systems -- 4 Conclusions -- References -- Solutions of Systems of Linear Fuzzy Differential Equations for a Special Class of Fuzzy Processes -- 1 Introduction -- 2 Mathematical Background -- 3 Calculus Theory for Fuzzy Functions Under -derivative -- 4 Systems of Linear FDEs for S-linearly Correlated Fuzzy Processes -- 5 Application on Mass-Spring Multiple System -- 6 Final Remarks -- References -- Abstractive Representation Modeling for Image Classification -- 1 Introduction -- 1.1 Background -- 1.2 Identified Research -- 2 Data -- 2.1 MNIST Digit Dataset -- 3 Method -- 3.1 Abstractive Processing -- 3.2 Abstractive Level Design.3.3 Pattern Frequency Detector -- 3.4 Classifier -- 4 Results -- 4.1 Global Performance Analysis of ARM and CNN -- 4.2 Robustness Analysis of ARM and CNN -- 5 Conclusion -- 5.1 Contributions -- 5.2 Future Research -- References -- A-Cross Product for Autocorrelated Fuzzy Processes: The Hutchinson Equation -- 1 Introduction -- 2 Fuzzy Set Theory -- 3 A-cross Product of Linearly Correlated Fuzzy Numbers -- 4 Fuzzy Differential Equations Under Fréchet Derivative -- 5 The Hutchinson Equation -- 5.1 Crisp Logistic Growth Rate -- 5.2 Fuzzy Logistic Growth Rate -- 6 Final Considerations -- References -- Use of T-Norm in an Epidemiological Model for COVID-19 -- 1 Introduction -- 1.1 Triangular Norm and SIR Model -- 2 Methodology -- 3 Application and Results -- 4 Comments and Discussions -- 5 Conclusion -- References -- Fuzzy-Flatness Hybrid Fault-Tolerant Control -- 1 Introduction -- 2 Differential Flatness -- 3 3-Tank Problem -- 4 Fuzzy-Flatness Hybrid Control -- 5 Results -- 6 Conclusion -- References -- Finding Fuzziness in Neural Network Models of Language Processing -- 1 Introduction -- 2 The Concept of Vagueness and the Vagueness of Concepts -- 2.1 Psychological Significance -- 2.2 Handling Vagueness Using Fuzzy Interpretations of Linguistic Hedges -- 3 Pre-trained Language Models -- 4 Vagueness in Natural Language Inference Models -- 4.1 Methodology -- 5 General Discussion and Conclusion -- References -- Interval Arithmetic: WSM, CI or RDM? -- 1 Introduction -- 2 CIA and RDM Arithmetics -- 2.1 Fuzzy Interval Linear Systems -- 3 Conclusion -- References -- Breast Cancer Wisconsin (Diagnostic) Data Analysis Using GFS-TSK -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusions -- References -- A New GA-PSO Optimization Methodology with Fuzzy Adaptive Inertial Weight -- 1 Introduction -- 2 Proposed Optimization Methodology.2.1 Parents Selection Genetic Operator.Lecture Notes in Networks and Systems Ser.Explainable AI and Other Applications of Fuzzy Techniques Electronic books.Rayz Julia932877Raskin Victor302413Dick Scott921626Kreinovich Vladik117742MiAaPQBOOK9910497106303321Explainable AI and Other Applications of Fuzzy Techniques2099686UNINA