10833nam 22004693 450 991049709520332120210901203646.03-030-78716-8(CKB)4100000012008413(MiAaPQ)EBC6710661(Au-PeEL)EBL6710661(EXLCZ)99410000001200841320210901d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierOcean Wave Energy Systems Hydrodynamics, Power Takeoff and Control SystemsCham :Springer International Publishing AG,2021.©2022.1 online resource (585 pages)Ocean Engineering and Oceanography Ser. ;v.143-030-78715-X Intro -- Preface -- Contents -- Contributors -- 1 Wave Energy Potential -- 1.1 World Energy Outlook -- 1.2 Ocean Energy -- 1.3 Environmental Impacts -- 1.4 Tidal Datum -- 1.5 Importance of Wave Energy -- 1.6 Wave Power Potential -- 1.6.1 Methods of Evaluation -- 1.6.2 Estimated Wave Power Potential -- 1.7 Wave Energy Map for INDIA -- References -- 2 Wave Energy Convertors -- 2.1 General -- 2.2 Harnessing of Wave Energy -- 2.3 Conversion Process -- 2.4 Wave Energy Devices -- 2.5 Wave Energy Developments and Activities -- 2.5.1 General -- 2.5.2 Shoreline Wave Energy System -- 2.5.3 Near Shore Wave Energy System -- 2.5.4 Offshore Wave Energy Systems -- 2.6 Onshore/Nearshore OWC Wave Energy Devices -- 2.7 Offshore OWC Wave Energy Devices -- 2.8 Special Types of Breakwaters with WEC -- 2.9 Summary -- References -- 3 Direct Absorber for Wave Energy Conversion -- 3.1 Introduction -- 3.1.1 Wave Energy Physics and Resource -- 3.2 Theoretical Background and Governing Equations -- 3.2.1 Linear Wave Theory of Ocean Surface (LWT) -- 3.2.2 Dispersion Relation -- 3.2.3 Energy in Water Wave -- 3.2.4 Wave Energy Spectrum -- 3.2.5 Forces on Floating Bodies -- 3.3 Wave Energy Conversion Systems -- 3.3.1 Attenuator -- 3.3.2 Oscillating Wave Surge Converter -- 3.3.3 Oscillating Water Column -- 3.3.4 Overtopping Device -- 3.3.5 Submerged Pressure -- 3.3.6 Point Absorber -- 3.4 Conclusion -- References -- 4 Development of Oscillating Water Column and Wave Overtopping-Wave Energy Converters in Europe Over the Years -- 4.1 The Importance of Wave Energy Resources Utilisation -- 4.2 A Brief Introduction to Wave Energy Harvesting Mechanism -- 4.3 Oscillating Water Column (OWC) Type Wave Energy Converter -- 4.3.1 General Introduction of OWC -- 4.3.2 Working Principle and Design Analysis of OWC -- 4.4 Oscillating Water Column Type WEC Projects Developments History.4.4.1 Land Installed Marine Power Energy Transmitter (LIMPET) -- 4.4.2 Pico Power Plant -- 4.4.3 Mutriku Wave Energy Plant -- 4.4.4 Resonant Wave Energy Converter (REWEC) or U-OWC -- 4.4.5 Siadar Wave Power Project -- 4.4.6 Floating OWC Development -- 4.5 Brief Summary of Wave Overtopping Devices' Development Over the years -- 4.5.1 General Introduction to Wave Overtopping Mechanism -- 4.5.2 Wave Loadings Analysis and Development of Sea-Wave Slot-Cone Generator (SSG) -- 4.5.3 Overtopping BReakwater for Energy Conversion (OBREC) Development -- References -- 5 Performance Characteristics of an OWC in Regular and Random Waves -- 5.1 Introduction -- 5.2 Experimental Investigations -- 5.2.1 OWC Model -- 5.2.2 Experimental Program -- 5.2.3 Harbour Walls in OWC -- 5.2.4 Wave Characteristics for the Study -- 5.2.5 Hydrodynamic Factors -- 5.3 Results and Discussion -- 5.3.1 Regular Wave Tests -- 5.3.2 Random Waves -- 5.3.3 OWC with Inclined Harbour Walls in Regular and Random Wave Fields -- 5.4 Summary and Conclusions -- References -- 6 Wave Induced Pressures and Forces on an OWC Device -- 6.1 Introduction -- 6.2 Literature Review -- 6.3 Experimental Investigation -- 6.3.1 Test Facility -- 6.3.2 Test Model and Experimental Set-Up -- 6.3.3 Instrumentation -- 6.3.4 Wave Characteristics -- 6.4 Hydrodynamic Parameters -- 6.5 Results and Discussion -- 6.5.1 Time Histories of Measured Signatures -- 6.5.2 Pressure Distribution in Front of the Lip Wall -- 6.5.3 Pressure Distribution at the Rear Wall of OWC Device -- 6.5.4 Air Pressure Inside the OWC Caisson -- 6.5.5 Horizontal Wave Force -- 6.5.6 Vertical Wave Force -- 6.5.7 Comparison of Measured and Estimated Horizontal Wave Force -- 6.5.8 Total Horizontal and Vertical Wave Forces Due to Random Waves -- 6.6 Summary and Conclusions -- References -- 7 Hydrodynamic Performance Characteristics of U-OWC Devices.7.1 Introduction -- 7.2 Experimental Set-Up -- 7.2.1 General -- 7.2.2 Details of the Models and Test Set-Up -- 7.2.3 Test Facility -- 7.2.4 Experimental Procedure -- 7.3 Results and Discussion -- 7.3.1 Spectral Width Parameter -- 7.3.2 Dynamic Pressures -- 7.3.3 Energy Efficiency -- 7.3.4 Air Pressure Variation -- 7.3.5 Phase Difference -- 7.3.6 Wave Amplification -- 7.4 Conclusions -- References -- 8 CFD Modelling of OWC Devices for Wave Energy Harnessing -- 8.1 Introduction -- 8.2 The Numerical Experiment -- 8.2.1 Computational Domain -- 8.2.2 Mesh -- 8.2.3 Boundary Conditions -- 8.3 Governing Equations -- 8.3.1 Pressure-Based Solver -- 8.3.2 Pressure-Velocity Coupling -- 8.3.3 Solution Control Parameters -- 8.4 Under-Relaxation Factors -- 8.4.1 Spatial Discretization of Equations -- 8.4.2 Reconstruction of Gradients -- 8.4.3 Time Discretization -- 8.5 Multiphase Flow -- 8.5.1 The Volume of Fluid (VOF) -- 8.6 Explicit Scheme -- 8.7 Implicit Scheme -- 8.7.1 Interpolation Near the Water-air Interface -- 8.7.2 Wave Generation -- 8.7.3 Dynamic Mesh -- 8.8 Dynamic Mesh Update -- 8.9 Elastic Smoothing Method -- 8.9.1 Open Channel Boundary Condition -- 8.10 PTO System and Configuration of the Porous Medium Region -- 8.11 Simulation, Data Saving, and Post-Processing -- 8.12 Conclusions -- References -- 9 Numerical Modelling Techniques for Wave Energy Converters in Arrays -- 9.1 Introduction -- 9.2 Review of Hydrodynamic Modelling of WEC Arrays -- 9.2.1 Point Absorber Method -- 9.2.2 Plane-Wave Method -- 9.2.3 Multiple Scattering -- 9.2.4 Direct Matrix Method -- 9.2.5 Geographical Scale Studies -- 9.3 Boundary Element Methods -- 9.3.1 Problem Definition -- 9.3.2 Mathematical Formulation -- 9.3.3 Generated Power and Interaction Factor -- 9.3.4 Wave Disturbance Under Multi-Directional Sea -- 9.4 Verification of the Numerical Model.9.4.1 Performance of Arrays -- 9.5 WEC Array Modelling by Ocean Scale Numerical Models -- 9.5.1 Numerical Model Set-Up -- 9.5.2 Predictions Without Energy Extraction -- 9.5.3 Implementation of Energy Extraction -- 9.6 Concluding Remarks -- References -- 10 Hydrodynamic Performance of an Array of OWC Devices Integrated with Breakwater -- 10.1 Introduction -- 10.2 Experimental Investigation -- 10.2.1 Test Facility -- 10.2.2 Data Acquisition Sensors -- 10.2.3 Test Model and Experimental Setup -- 10.2.4 Instrumentation -- 10.2.5 Wave Characteristics and Hydrodynamic Parameters -- 10.3 Results and Discussion -- 10.3.1 Time Histories -- 10.3.2 Effect of Wave Characteristics -- 10.3.3 Wave Interaction Between Devices -- 10.3.4 Effect of Spacing -- 10.3.5 Performance of OWC in an Array -- 10.3.6 Total Performance vs. Average Performance -- 10.3.7 Reflection Nature of OWCBW System -- 10.4 Hydrodynamic Performance of OWCBW System Subjected to Oblique Wave Incidence -- 10.5 Summary and Conclusions -- 10.5.1 The Salient Conclusions Drawn from the Studies Are -- References -- 11 Power Take-Off Devices for Wave Energy Converters -- 11.1 Introduction to Wave Energy -- 11.2 Types of Power Take-Off Mechanisms Used in Point Absorbers -- 11.2.1 Air Turbines -- 11.2.2 Hydraulic Converters -- 11.2.3 Hydro Turbines -- 11.2.4 Direct Mechanical Drive Systems -- 11.2.5 Direct Electrical Drive Systems -- 11.3 Conclusion -- References -- 12 Wells Turbine as a Power Take-Off Mechanism for Wave Energy Converters -- 12.1 Introduction -- 12.2 Historical Overview -- 12.3 Wells Turbine: Principle of Operation -- 12.4 Variations of Wells Turbine -- 12.4.1 Monoplane Wells Turbine -- 12.5 Turbines with Guide Vane -- 12.6 Turbines with Non-zero Pitch Angles -- 12.7 Turbines with Variable Pitch Angles -- 12.8 Unsteady Flow Analysis -- 12.9 Starting Characteristics of Wells Turbine.12.10 Optimization of Air Turbines -- 12.11 Conclusion -- References -- 13 Experimental Testing of Air Turbines for Wave Energy Conversion -- 13.1 Introduction -- 13.2 Experimental Setup -- 13.3 Instrumentation: Sensors and Data Acquisition Systems -- 13.4 Generator Selection -- 13.5 Generator Characteristics -- 13.6 Experimental Procedure -- 13.7 Experimental Testing of an Impulse Turbine -- 13.7.1 Design and Fabrication -- 13.7.2 No-Load Test -- 13.7.3 Performance of the Turbine -- 13.7.4 Power Calculation: Load Test -- 13.8 Experimental Testing of a Wells Turbine -- 13.8.1 Design and Fabrication -- 13.8.2 Starting Characteristics -- 13.8.3 No-Load Test -- 13.8.4 Test with Resistive Loading -- 13.9 Uncertainty Analysis -- 13.10 Conclusions -- References -- 14 Passive Flow Control Methods for Performance Augmentation in Air Turbines Used for Wave Energy Conversion-A Review -- 14.1 Wave Energy -- 14.2 Oscillating Water Column -- 14.3 Air Turbines for Wave Energy Conversion -- 14.3.1 Wells Turbine -- 14.3.2 Axial Impulse Turbine -- 14.4 Flow Control Methods -- 14.5 Passive Flow Control Methods in Wells Turbine -- 14.5.1 Blade Sweep -- 14.5.2 Blade Setting Angle -- 14.5.3 Penetrating Ring and Endplate at the Blade Tip -- 14.5.4 Non-uniform Tip Clearance -- 14.5.5 Variable Chord Blade -- 14.5.6 Casing Groove -- 14.5.7 Suction Slots -- 14.5.8 Variable Thickness Blade -- 14.5.9 Leading-Edge Undulation -- 14.5.10 Radiused Edge Tip Blade -- 14.5.11 Static Extended Trailing Edge (SETE) -- 14.5.12 Gurney Flap -- 14.5.13 Combined Radiused Edge Tip, Static Extended Trailing Edge, and Variable Thickness Blade -- 14.6 Passive Flow Control Methods in Axial Impulse Turbine -- 14.6.1 Endplates -- 14.6.2 Blade Setting Angle -- 14.6.3 Penetration Ring -- 14.6.4 Leaned Blade -- 14.7 Conclusions -- References.15 Optimization of an Impulse Turbine for Efficient Wave Energy Extraction.Ocean Engineering and Oceanography Ser.Ocean Wave Energy Systems Electronic books.Samad Abdus912786Sannasiraj S. A917017Sundar V917018Halder Paresh917019MiAaPQBOOK9910497095203321Ocean Wave Energy Systems2055834UNINA01763nam0 2200397 450 00003294320220713141329.0disi reno n)no Caso (3) 1824 (R) Vol. 1feiUNIPARTHENOPELEDI i.te e.zi tafa (3) 1825 (R) Vol. 2feiUNIPARTHENOPE20200424g18241825km-y0itay50------baitaITy-------001yyLezioni di commercio o sia d'economia civile con un ragionamento sull'agricoltura e un altro sul commercio in universale di Antonio Genovesi volume 1. [-2.]Milanodalla Societa tipogr. de' Classici italiani1824-18252 v.Opere scelteAntonio Genovesi12Edizione delle opere classiche italiane del secolo 18103105Vol. 1: Ritr. dell'A. inciso da G. BoggiVol. 1: Segn.: [a]8 b-d8 1-24/8 25/6Vol. 1: Ultima c. biancaVol. 2: (Segn.: [1]8 2-25/8Vol. 1: 1824. - LXIII, [1], 392, [4] p., [1] c. di tav. : ritr. calcogr.Vol. 2: 1825. - 398, [2] p.2001Opere scelteAntonio Genovesi1-22001Edizione delle opere classiche italiane del secolo 18103, 105Lezioni di commercio o sia d'economia civile2570300ItaliaMilanoGenovesi,Antonio<1713-1769>07067909Boggi,Giovanni350Società tipografica de' classici italiani650ITUNIPARTHENOPE20200424RICAUNIMARC000032943DiSEG A-II 351886NAVA12020DiSEG A-II 351886NAVA12021Lezioni di commercio o sia d'economia civile2570300UNIPARTHENOPE