10541nam 2200457 450 991049518570332120220512212035.03-030-72200-7(CKB)4100000012008361(MiAaPQ)EBC6710493(Au-PeEL)EBL6710493(PPN)257355545(EXLCZ)99410000001200836120220512d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFiberglass science and technology chemistry, characterization, processing, modeling, application, and sustainability /Hong Li, editorCham, Switzerland :Springer,[2021]©20211 online resource (555 pages)3-030-72199-X Intro -- Foreword -- Preface -- Contents -- About the Editor -- Chapter 1: Commercial Glass Fibers -- 1.1 Overview -- 1.2 Continuous Glass Fibers -- 1.2.1 E-Glass -- 1.2.2 C-Glass -- 1.2.3 AR-Glass -- 1.2.4 D-Glass -- 1.2.5 S-Glass -- 1.2.6 R-Glass -- 1.2.7 Continuous Glass Fiber Production -- 1.2.8 Raw Materials -- 1.2.9 Batch-to-Melt Conversion -- 1.2.10 General Aspects of Continuous Fiber Production -- 1.2.11 Continuous Fiber Drawing -- 1.2.12 Fiber Glass Database Development and Composition Design -- 1.2.12.1 Statistical Composition-Property Mixture Models -- 1.2.12.2 Application of Statistical C-P Models in Continuous Fiber Glass Design -- 1.2.13 Sizing/Binder in Glass Fiber Production and Applications -- 1.2.14 Major Continuous Fiber Glass Producers -- 1.2.14.1 Global Continuous Fiber Glass Production -- 1.2.14.2 Global Continuous Glass Fiber Reinforced Polymeric Composite Markets -- 1.2.14.3 Emerging Continuous Glass Fiber Markets -- 1.2.15 Usable Strength of Glass Fibers -- 1.2.15.1 Fundamental of Solid Fracture -- 1.2.15.2 Glass Fracture Induced by Microscopic Defects -- 1.2.15.3 Glass Fracture Induced by Macroscopic Defects -- 1.2.15.4 Modulus of Glass and Continuous Glass Fibers -- 1.3 Industrial Mineral Wool Fibers -- 1.3.1 Manufacturing of Mineral Wool -- 1.3.2 Raw Materials -- 1.3.3 Industrial Mineral Wool Production Technology -- 1.3.4 Product Properties -- 1.3.4.1 Biopersistence and Durability of Mineral Wool Fibers -- 1.3.4.2 Thermal properties of Mineral Wool -- 1.3.5 Global Mineral Fiber Production and Market -- 1.4 Perspectives -- References -- Chapter 2: Structure Characterizations and Molecular Dynamics Simulations of Melt, Glass, and Glass Fibers -- 2.1 Raman Spectroscopy in Study of Structures of Glass and Glass Fiber -- 2.1.1 Introduction -- 2.1.2 Brief Historical Perspective and Simple Theory -- 2.1.3 Instrumentation.2.1.3.1 Excitation Line -- 2.1.3.2 Notch Filters, Optical Spectrometer or Grating, Monochromators -- 2.1.3.3 Detectors -- 2.1.3.4 Confocal System -- 2.1.3.5 Data Acquisition and Reduction -- 2.1.3.6 Temperature and Excitation Line Effects -- 2.1.3.7 Baseline Correction and Normalization -- 2.1.3.8 Size of the Sampled Area -- 2.1.4 Other Types of Raman Spectroscopy -- 2.1.4.1 Hyper-Raman Scattering (HRS) -- 2.1.4.2 Surface Enhanced Raman Scattering (SERS) -- 2.1.5 Chemical Effect on Raman Spectra of Glasses -- 2.1.5.1 SiO2 Polymorphs -- 2.1.5.2 SiO2 Versus GeO2 -- Bulk Composition Change -- Application in a Glass Fiber -- 2.1.5.3 Amorphous Silicate Glasses -- 2.1.6 Raman Spectroscopy for Various Glass Fiber Applications -- 2.1.6.1 Non-Newtonian Effect Observed by Raman Spectroscopy -- 2.1.6.2 Loss Reduction in Telecommunication Optical Fibers -- 2.1.6.3 High-Temperature Optical Fibers Sensing and Underlying Microscopic Mechanisms -- 2.1.6.4 Irradiations Effects Investigated by Raman Spectroscopy -- Glasses in Nuclear Environments -- Reduction of Optical Fibers Radiation Resistance for Harsh Environment Applications -- Femtosecond Laser Processing of Glasses for Photonics Applications -- 2.1.7 Permanent Densification of Glasses Investigated by Raman Spectroscopy -- 2.1.8 Volatiles, Crystallization and Nucleation -- 2.1.8.1 Volatiles in Glasses -- 2.1.8.2 Nucleation and Growth -- 2.1.9 Conclusion -- 2.2 Nuclear Magnetic Resonance Spectroscopy in Study of Structures of Glass and Glass Fiber -- 2.2.1 Introduction -- 2.2.2 Basics of High-Resolution NMR -- 2.2.3 Applications of NMR Spectroscopy in Studying Structure of Glass -- 2.2.3.1 Silicon-29 NMR -- 2.2.3.2 Boron-11 NMR -- 2.2.3.3 Aluminum-27 NMR -- 2.2.3.4 Sodium-23 NMR -- 2.2.3.5 Calcium-43 NMR -- 2.2.3.6 Oxygen-17 NMR -- 2.2.3.7 Other Nuclei.2.2.4 Application of NMR Spectroscopy in Fiber Glass Research -- 2.2.5 Conclusion -- 2.3 Molecular Dynamics Simulations of Oxide Fiber Glass Structure and Properties -- 2.3.1 Introduction -- 2.3.2 Molecular Dynamics Simulation Basics -- 2.3.2.1 Empirical Potentials for MD Simulations -- 2.3.2.2 Bulk Glass and Glass Surface Generation -- 2.3.3 Analysis Methods -- 2.3.3.1 Structure Analysis -- Pair Distribution Function (PDF) and Coordination Number (CN) -- Bond Angle Distribution Function (BAD) -- Qn Distribution and Ring Size Distribution -- 2.3.4 Property Analysis -- 2.3.4.1 Ion Diffusion -- 2.3.4.2 Elastic Modulus -- 2.3.5 MD Simulations of Aluminosilicate and Borosilicate Glasses -- 2.3.5.1 Aluminosilicate Glasses -- 2.3.5.2 Borosilicate Glasses -- 2.3.6 Glass Surface Simulations -- 2.3.7 Calculations of Mechanical Properties of Bulk Glasses and Glass Fibers -- 2.3.8 Conclusion Remarks and Outlooks -- 2.4 Differential Scanning Calorimetry (DSC) Characterization of Glass Fibers -- 2.4.1 Introduction -- 2.4.2 Procedure of DSC Characterizations -- 2.4.2.1 Wool Fibers -- 2.4.2.2 Continuous Fibers -- 2.4.3 Determination of the Fictive Temperature of Glass Fibers -- 2.4.3.1 Slowly Cooled Glasses -- 2.4.3.2 Fast- and Hyper-Quenched Glasses -- 2.4.4 Thermal and Mechanical Histories -- 2.4.4.1 Determination of Glass Cooling Rate -- 2.4.4.2 Thermal History -- 2.4.4.3 Mechanical History -- 2.4.5 Structural Heterogeneities in Glass Fibers -- References -- Chapter 3: Surface Chemistry and Adsorption on Glass Fibers -- 3.1 Introduction -- 3.2 Methods of Surface Chemical Analysis for Glass -- 3.2.1 Surface Compositional Analysis -- 3.2.2 Surface Chemical Structure -- 3.2.3 X-Ray Absorption Spectroscopy (XAS) -- 3.2.4 Inverse Gas Chromatography-Temperature Programmed Desorption -- 3.3 Composition and Local Structure at Boroaluminosilicate Glass Fiber Surfaces.3.3.1 Lab-Scale Fibers and Their Processing -- 3.3.2 Surface Compositional Analyses of Fibers -- 3.3.3 Boron Coordination: Bulk and Surface -- 3.4 Adsorption Sites on Glass Fiber Surfaces -- 3.5 Concluding Remarks -- References -- Chapter 4: Sizing Chemistry of Glass Fibers -- 4.1 The Formulation of Glass Fiber Sizes -- 4.2 Sizing in Fiber and Composite Processing -- 4.3 Sizing and Fiber Performance -- 4.3.1 Fiber Surface -- 4.3.2 Fiber Tensile Strength -- 4.4 Sizing and Interphase Adhesion -- 4.4.1 Silanes and Interphase -- 4.4.2 Interphase in Thermoset Composites -- 4.4.3 Interphase in Thermoplastic Composites -- 4.5 Sizing and Composite Performance -- 4.5.1 Epoxy Composite Performance -- 4.5.2 Polyester Composite Performance -- 4.5.3 Thermoplastic Composite Performance -- 4.6 Concluding Remarks -- References -- Chapter 5: Fiberglass Batch-to-Melt Process -- 5.1 Composition-Property Relations -- 5.2 Relation Between Structure and Thermodynamics -- 5.3 Thermodynamics of One-Component Glasses and Melts -- 5.4 Multi-component Glasses and Melts -- 5.5 Thermodynamic Characterization of Raw Materials -- 5.5.1 Sand -- 5.5.1.1 Grain Size Distribution -- 5.5.1.2 Iron Content -- 5.5.1.3 Content of High-Liquidus Phases -- 5.5.1.4 Water Content -- 5.5.2 Aluminum Oxide Carriers -- 5.5.3 Alkaline Earth Oxide Carriers -- 5.5.4 Boron Oxide Carriers -- 5.5.5 Soda Ash -- 5.6 Thermodynamics and Kinetics of the Batch-to-Melt Conversion -- 5.6.1 Energetics -- 5.6.2 Kinetics -- 5.6.3 Joint Thermodynamic and Kinetic Approach to Batch Melting -- 5.6.4 Example of an Industrial Application -- 5.7 Outlook -- References -- Chapter 6: Environmental Aspects of Fiberglass Melting -- 6.1 Introduction -- 6.2 Melters for Fiberglass Production -- 6.3 Emissions from the Batch and Melt -- 6.3.1 Evaporation of Volatile Compounds -- 6.3.1.1 Borate Species -- 6.3.1.2 Alkalis.6.3.1.3 Halogens -- 6.3.1.4 Heavy Metals -- 6.3.1.5 Implications of Evaporations from Batch and Melt -- 6.3.2 Gases Released from Batch and Melt Reactions -- 6.3.2.1 CO2 -- 6.3.2.2 SOx -- 6.3.2.3 NOx -- 6.4 Emissions from Combustion Processes -- 6.4.1 CO2 -- 6.4.2 NOx -- 6.5 Other Types of Emissions -- 6.5.1 Raw Materials Handling -- 6.5.2 Carryover -- 6.5.3 Coating and Binding Processes -- 6.6 Emission Reduction Strategies -- 6.6.1 Indicative Ranges of Emissions from Fiberglass Furnaces -- 6.6.2 Primary Measures -- 6.6.2.1 Composition and Raw Material Selection -- 6.6.2.2 Combustion System and Electric Melting -- 6.6.2.3 Fuel Selection -- 6.6.2.4 Burner Selection and Burner Settings -- 6.6.2.5 Melter Design and Maintenance -- 6.6.3 Secondary Measures -- 6.6.3.1 Dust/Particulates -- Bag Filters -- Electrostatic Precipitators -- Wet Scrubbers -- Cyclone Separators -- 6.6.3.2 Gaseous Emissions -- Dry and Semidry Scrubbers -- Comment on NOx Secondary Reduction Measures -- 6.7 Monitoring Emissions from the Glass Furnaces -- 6.7.1 General Considerations -- 6.7.2 Best Available Techniques: Associated Emission Levels (BAT-AELs) -- 6.8 Waste Recycling -- 6.8.1 Cullet -- 6.8.2 Filter Dust -- 6.8.3 End-of-Life Product Recycling -- 6.9 Environmental Benefits of Fiberglass Production -- 6.10 Conclusions and Outlooks -- References -- Chapter 7: Fiber Forming and Its Impact on Mechanical Properties -- 7.1 Introduction -- 7.2 Glass Fiberizing Techniques -- 7.2.1 Continuous Fiber Spinning -- 7.2.2 Discontinuous Centrifugal Fiber Spinning -- 7.2.2.1 External Centrifugal Process -- 7.2.2.2 Internal Centrifugal Process -- 7.3 Fiber Spinnability and Fiberizing Window -- 7.3.1 Definition of Fiber Spinnability -- 7.3.2 Fiber Spinning Window and Melt Fragility -- 7.3.3 Quantification of Fiber Spinnability -- 7.4 Critical Parameters for Fiber Spinning.7.4.1 Melt Stability.Glass fibersGlass fibers.666.157Li HongMiAaPQMiAaPQMiAaPQBOOK9910495185703321Fiberglass Science and Technology2835163UNINA