04687nam 2200493 450 991048872740332120231110211529.03-030-75228-3(CKB)5590000000516574(MiAaPQ)EBC6676124(Au-PeEL)EBL6676124(OCoLC)1258670953(PPN)269153152(EXLCZ)99559000000051657420220327d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierRenewable energy utilization using underground energy systems /Paweł OcłońCham, Switzerland :Springer,[2021]©20211 online resource (182 pages)Lecture Notes in Energy ;v.843-030-75227-5 Intro -- Introduction -- Contents -- Symbols -- 1 Renewable Energy Sources in Poland -- References -- 2 Storage of Thermal Energy in the Ground -- 2.1 Storage of Thermal Energy in the Tank Thermal Energy Storage Method -- 2.2 Storage of Thermal Energy in the Pit Thermal Energy Storage Method -- 2.3 Storage of Thermal Energy in the Borehole Thermal Energy Storage Method -- 2.4 Thermal Energy Storage in Reinforced Concrete Energy Piles -- 2.5 Storage of Thermal Energy in the Aquifer Thermal Energy Storage Method -- 2.6 Storage of Thermal Energy in the Cavity Thermal Energy Storage Method -- References -- 3 Solar-Assisted Heat Pumps -- 3.1 Solar-Assisted Ground Source Heat Pumps -- References -- 4 Zero-Emission Building Heating System Using Thermal Energy Accumulation in the Ground -- 4.1 Concept of the System -- 4.2 Components of the System -- 4.2.1 PVT Panels with a Sun-Tracking System -- 4.2.2 Demonstration Installation of a Zero-Emission System with Heat Accumulation in the Ground -- 5 Mathematical Modelling of the Resheat System -- 5.1 Thermal Properties of the Ground -- 5.1.1 Thermal Conductivity of the Ground-the Campbell-De Vries Model -- 5.1.2 Soil Specific Heat -- 5.2 Modelling the Building Heating System with Heat Accumulation in the Ground -- 5.2.1 Calculation of the Heat Pump Coefficient of Performance -- 5.2.2 A Mathematical Model of RESHeat System with Heat Accumulation in Two Underground Tanks -- 5.2.3 Discretization of Energy Equation-Finite Volume Method -- 5.2.4 General Energy Balance Equations in the Cartesian Coordinate System -- 5.2.5 Results and Discussion -- 5.2.6 Analysis of the Impact of the Ground Thermophysical Properties on the Performance of the Heat Accumulation System -- References -- 6 Resheat System Optimization -- 6.1 PSO Method Algorithm -- 6.2 Calculation Results -- References.7 Modelling Heat Transfer in the PV Panel Cooling System -- 7.1 Numerical Modelling of the Temperature Distribution of PVT Panels -- 7.1.1 Model of Heat Exchange in PVT Panels -- 7.1.2 PV Panel Energy Balance Equation-The Cartesian System -- 7.1.3 PV Panel Energy Balance Equation-The Cylindrical System -- 7.1.4 Discretization of the Coolant Energy Equation-Finite Difference Method -- 7.2 Analysis of the Cooling System Operation -- References -- 8 Economic Analysis -- 9 Advantages of the Resheat System Over Traditional Solutions -- 10 Optimization of Underground Power Cable Systems -- 10.1 Optimization Problem -- 10.2 Electric-thermal Model of the Considered UTL -- 10.3 Thermal Conductivity of the Computational Subdomains -- 10.3.1 Thermal Conductivity of Cable Layers -- 10.3.2 Thermal Conductivity of the Soil and Backfill Materials -- 10.4 Optimization Algorithm -- 10.4.1 Jaya Algorithm -- 10.4.2 Modified Jaya Algorithm -- 10.5 Results and Discussion -- 10.5.1 Performance Analysis of the Modified Jaya Algorithm -- 10.5.2 Material Cost Optimization and Thermal Performance Analysis for a 400 kV ULT -- 10.5.3 Thermal Performance of Different Backfill Materials Under Variable Loading -- 10.5.4 Thermal Performance of the UPCS Under Various Soil and Backfill Thermal Conductivities -- 10.6 Outline -- References -- Summary and Conclusions.Lecture Notes in Energy Underground architectureHeatingHeatTransmissionUnderground architecture.Heating.HeatTransmission.697Ocłoń Paweł966374MiAaPQMiAaPQMiAaPQBOOK9910488727403321Renewable Energy Utilization Using Underground Energy Systems2193180UNINA