10869nam 2200505 450 991048871570332120220327092649.03-030-75672-6(CKB)5590000000518451(MiAaPQ)EBC6676026(Au-PeEL)EBL6676026(OCoLC)1259440331(PPN)258059176(EXLCZ)99559000000051845120220327d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSuperconductivity basics and applications to magnets /R. G. Sharma2nd ed.Cham, Switzerland :Springer,[2021]©20211 online resource (649 pages)Springer series in materials science ;2143-030-75671-8 Intro -- Preface to Second Edition -- Acknowledgements -- Contents -- About the Author -- 1 Introduction -- 1.1 Why Low Temperature Is so Exciting? -- 1.2 How to Conduct Experiment at Low Temperatures? -- 1.3 Gas Liquefaction -- 1.3.1 Isenthalpic Process -- 1.3.2 Isentropic Process -- 1.3.3 The Linde-Hampson Process -- 1.3.4 The Claude Process -- 1.3.5 Liquefaction of Helium (1908) -- 1.3.6 Collins Liquefaction Cycle -- 1.4 Discovery of Superconductivity-A Fall-Out of Helium Liquefaction -- References -- 2 The Phenomenon of Superconductivity and Type II Superconductors -- 2.1 Electrical Conduction in Metals -- 2.2 The Phenomenon of Superconductivity -- 2.3 The Critical Magnetic Field -- 2.4 The Meissner Effect (Field Expulsion) -- 2.4.1 Perfect Diamagnetism -- 2.4.2 The Penetration Depth -- 2.4.3 Magnetization in Superconductors -- 2.4.4 The Intermediate State -- 2.5 Two-Fluid Model -- 2.6 Thermodynamics of Superconductors -- 2.6.1 The Gibbs Free Energy -- 2.6.2 Specific Heat -- 2.6.3 Phase Transition -- 2.7 Thermal Conductivity -- 2.8 Thermoelectric Power -- 2.9 The Energy Gap -- 2.10 The Isotope Effect -- 2.11 Flux Quantization -- 2.12 The Concept of Coherence Length and Positive Surface Energy -- 2.13 Determination of Energy Gap (Single Particle Tunnelling) -- 2.14 The Josephson Effect (Pair Tunnelling) -- 2.14.1 DC Josephson Effect -- 2.14.2 AC Josephson Effect -- 2.14.3 The SQUID -- 2.15 Type II Superconductors-Abrikosov's Concept of Negative Surface Energy -- 2.15.1 Lower and Upper Critical Magnetic Field -- 2.15.2 The Mixed State -- 2.15.3 Current Flow and Mixed State -- 2.15.4 Measuring Transport Critical Current -- 2.15.5 Magnetization in Type II Superconductors -- 2.15.6 Irreversible Magnetization -- 2.15.7 The Bean's Critical-State Model and Magnetization -- 2.15.8 The Kim Model -- 2.15.9 Flux Creep.2.15.10 Critical Current by Magnetization Method -- 2.16 Surface Superconductivity-Critical Magnetic Field Bc3 -- 2.17 Paramagnetic Limit -- References -- 3 High-Temperature Cuprate Superconductors and Later Discoveries -- 3.1 Discovery of Superconductivity in La-Ba-Cu-O System (Tc = 35 K) -- 3.2 The Y-Ba-Cu-O (YBCO) System-First Superconductor with Tc Above 77 K -- 3.2.1 Method of Synthesis of YBCO -- 3.2.2 Some Peculiar Properties of YBCO -- 3.2.3 YBCO Wires and Tapes -- 3.3 The Bi-Sr-Ca-Cu-O (BSCCO) System -- 3.3.1 Bi-2223 Wires and Tapes -- 3.3.2 First Generation (1G)-BSCCO Current Leads -- 3.4 The Tl-Ba-Ca-Cu-O System -- 3.5 The Hg-Ba-Ca-Cu-O System -- 3.6 Flux Vortices, Critical Current Density and Flux Pinning in High-Tc Superconductors -- 3.7 Critical Surface of High-Tc Superconductors -- 3.8 The Depairing Current -- 3.9 Grain Boundary Problem in High-Tc Superconductors -- 3.10 Discovery of Superconductivity in Magnesium Diboride (MgB2) -- 3.10.1 Peculiar Properties of MgB2 -- 3.10.2 Crystal and Electronic Structure and Energy Gaps in MgB2 -- 3.10.3 The Boron Isotope Effect -- 3.10.4 Some Physical Properties of MgB2 -- 3.10.5 Summery of the Various Properties of MgB2 -- 3.11 The Discovery of Iron-Based Superconductors-LaFeAsO 1111 Compounds -- 3.11.1 High Tc (> -- 50 K) in Sm and Nd-Based Oxypnictides -- 3.11.2 Superconductivity in K-Doped BaFe2As2 122 Compounds -- 3.11.3 Superconductivity in Iron-Chalcogenides -- 3.12 Superconductivity at 203 K in Sulphur Hydride (H3S) -- 3.13 Superconductivity at Room Temperature (Tc = 288 K @ 267 GPa) -- References -- 4 A Review of Theories of Superconductivity -- 4.1 A Chronology of Theories of Superconductivity -- 4.2 Londons' Theory -- 4.3 The Ginzburg-Landau Theory -- 4.3.1 Flux Exclusion and Zero Electrical Resistance -- 4.3.2 Flux Quantization -- 4.3.3 GL-Parameter and Type II Superconductors.4.3.4 Josephson Effect -- 4.4 The BCS Theory of Superconductivity -- 4.4.1 The Cooper Pairs -- 4.4.2 Formulation of the Microscopic Theory -- 4.4.3 Transition Temperature -- 4.4.4 The Energy Gap -- 4.4.5 Critical Field and Specific Heat -- 4.5 Anomalous Properties of the Cuprates -- 4.5.1 Temperature-Hole Concentration Phase Diagram -- 4.5.2 Normal State Resistivity -- 4.5.3 Presence of Pseudo-Gap in Highly Underdoped Superconductors -- 4.5.4 Comparison with Conventional Metallic Superconductors -- 4.6 Possible Theories of HTS -- 4.6.1 The Resonating Valence Bond (RVB) Theory -- 4.6.2 The Spin Fluctuation Theory -- 4.6.3 Revisiting BCS Theory to Explain HTS Superconductors -- 4.6.4 Positive Feedback Mechanism for High-Tc Superconductivity -- 4.6.5 Pairing in Strongly Correlated Electron Systems -- 4.6.6 Three-Band d-p Model -- 4.7 Theories of Newly Emerged Superconductors -- 4.7.1 Theory of Superconductivity in MgB2 -- 4.7.2 Theory of Iron-Based Superconductors (IBSC) -- 4.7.3 Superconductivity in Sulphur Hydride (H3S) -- References -- 5 Conventional Practical Superconductors -- 5.1 Superconductors Useful for Magnet Application -- 5.2 Thermal and Electromagnetic Instability Problem-The Multifilamentary Superconductors -- 5.2.1 Degradation and Flux Jump -- 5.2.2 The Adiabatic or Intrinsic Stability -- 5.2.3 The Dynamic and Cryostatic Stability -- 5.2.4 Multifilamentary Superconducting Wires -- 5.2.5 Twisting and Transposition of the Multifilamentary Wires -- 5.3 Losses in Practical Superconductors -- 5.3.1 Hysteresis Losses -- 5.3.2 Losses Due to Filament Coupling -- 5.3.3 Proximity Coupling Losses -- 5.3.4 Losses Due to Eddy Currents -- 5.3.5 Losses Due to Self-field Effect -- 5.3.6 Losses Due to Transport Current -- 5.3.7 AC Losses in High Temperature Oxide Superconductors -- 5.4 AC Loss Measurement Methods -- 5.4.1 Electric Method.5.4.2 Magnetization Method -- 5.4.3 Calorimetric Method -- 5.5 Practical Superconductors-The Ubiquitous Nb-Ti Superconductor -- 5.5.1 Emergence of Nb-Ti as a Superconductor for Magnets -- 5.5.2 The Phase Diagram of Nb-Ti -- 5.5.3 Optimization of Jc in Nb-Ti Wires -- 5.5.4 Developments in the Fabrication Process of MF Cu/Nb-Ti Composite Conductors -- 5.5.5 Use of Diffusion Barrier and Filament Spacing -- 5.5.6 Nb-Ti Cable-in-Conduit Conductors (CICC) -- 5.6 The Discovery of A-15 Nb3Sn Superconductor -- 5.6.1 Emergence of Nb3Sn as High-Field Superconductor -- 5.6.2 The Bronze Process -- 5.6.3 Parameters to Be Optimized -- 5.6.4 Elemental Additions to Nb3Sn -- 5.6.5 The Internal Tin (IT) Process -- 5.6.6 The Jelly Roll Process -- 5.6.7 The Rod Restacking Process (RRP) -- 5.6.8 The Powder-in-Tube (PIT) Process -- 5.6.9 Conductor for High-Luminosity LHC Quadrupole Magnets -- 5.6.10 The In Situ Process -- 5.7 The A-15 Nb3Al MF Superconductor -- 5.7.1 Phase Diagram of Nb-Al System -- 5.7.2 Mass Production of JR Nb3Al Conductors by JAERI for ITER -- 5.7.3 The Rapid Heating, Quench and Transformation (RHQT) Technique -- 5.8 The V3Ga Tapes and Multifilamentary Wires -- 5.8.1 The V-Ga Binary Phase Diagram -- 5.8.2 V3Ga Diffusion Tapes -- 5.8.3 Bronze-Processed V3Ga MF Conductors -- 5.8.4 V3Ga Conductor by PIT Method -- References -- 6 Practical Cuprate Superconductors -- 6.1 Introduction -- 6.2 2G REBCO Tape Wires (Coated Conductors) -- 6.2.1 Enhancement of Jc Through Heavy Doping -- 6.2.2 Development of Flexible Fine Round REBCO Wires with High Mechanical Strength -- 6.2.3 Next Generation High-Current REBCO STAR Wire for Compact Magnets -- 6.2.4 High Engineering Current Density (Je) in REBCO Wires -- 6.2.5 REBCO Deposition on 30 µm Hastelloy Substrate and High Je -- 6.2.6 High-Current CORC Cables -- 6.2.7 REBCO-CORC Cable-In-Conduit Conductors (CORC-CICC).6.2.8 The Roebel Bar Cable -- 6.2.9 HTS CroCo Cable Development for DEMO Fusion Reactor -- 6.2.10 Supremacy of REBCO-Coated Conductors -- 6.3 The Promising Bi2Sr2CaCu2Ox (Bi-2212) Practical Wires and Cables -- 6.3.1 Development of a 10 kA Bi-2212 Conductor -- 6.3.2 Bubble Formation in PIT Bi-2212 Wire Filaments and Current Blockage -- 6.3.3 High Jc in Round Bi-2212 Wires Through Over-Pressure Heat Treatment -- 6.3.4 Isotropic Round OP Bi-2212 Wires Generate a Field of 33.6 T -- 6.3.5 AC Loss in Bi-2212 Cable-In-Conduit Conductors -- 6.3.6 PIT-OPHT Bi-2212 Rutherford Cable -- 6.4 The Bi-2223 Conductors -- 6.4.1 The Controlled Over-Pressure (CT-OP) Processed Bi-2223 Superconductors -- 6.4.2 Suitability of DI-Bi-2223 for High-Field Magnets -- 6.4.3 Low AC Loss Bi-2223 Conductors -- 6.4.4 A Comparison Between B-2212 and Bi-2223 Wires -- References -- 7 Practical Magnesium Diboride (MgB2) Superconductor -- 7.1 Introduction -- 7.2 Preparation of Bulk MgB2, Single Crystal and Thin Film -- 7.3 MgB2 Wires, Tapes and Cables -- 7.3.1 Different Variants of PIT Technique-The In Situ PIT Technique -- 7.3.2 The Ex Situ PIT Technique -- 7.3.3 The Internal Magnesium Diffusion (IMD) Technique -- 7.3.4 Enhancement of Jc Through Optimization of Process Parameters and Doping -- 7.3.5 A Hybrid IMD/PIT Technique -- 7.4 Low AC Loss MgB2 Wires/Cables -- 7.5 Rutherford MgB2 Cables -- 7.5.1 Rutherford Cable with Al-Al2O3 Metal-Matrix Composite (MMC) Sheath -- 7.6 Thin Film Route for MgB2 Conductors -- 7.7 An Upswing in the Use of MgB2 for Applications -- References -- 8 Iron-Based Practical Superconductors -- 8.1 General Features of Iron-Based Superconductors -- 8.2 Structure and Phase Diagrams of IBSC Compounds -- 8.3 Electronic and Structural Phase Diagram of LnOFeAs, 1111 Compounds -- 8.4 Superconductivity in LaFeCoAsO Induced by Co Doping.8.4.1 Superconductivity in Co-Doped Sm(FeCo)AsO Compounds.Springer series in materials science ;214.SuperconductivitySuperconductivity.537.623Sharma R. G.909909MiAaPQMiAaPQMiAaPQBOOK9910488715703321Superconductivity2036164UNINA01428nam 22004093 450 991104241030332120251120080351.01-394-31236-91-394-31237-7(CKB)42867049500041(MiAaPQ)EBC32414885(Au-PeEL)EBL32414885(OCoLC)1551469816(EXLCZ)994286704950004120251120d2025 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierThe Handbook of Second Language Listening1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2026.1 online resource (494 pages)Blackwell Handbooks in Linguistics Series1-394-31234-2 Essential insights and strategies for teaching and researching second language listening comprehension skills The Handbook of Second Language Listening provides comprehensive and authoritative coverage of the processes, challenges, and pedagogy of second language (L2) listening.Blackwell Handbooks in Linguistics SeriesReed Marnie1608044MiAaPQMiAaPQMiAaPQBOOK9911042410303321The Handbook of Second Language Listening4458780UNINA