10488nam 2200469 450 991048559710332120230629233234.03-030-74338-1(CKB)5590000000487603(MiAaPQ)EBC6644958(Au-PeEL)EBL6644958(OCoLC)1257667057(EXLCZ)99559000000048760320220206d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierModeling explosions and blast waves /K. Ramamurthi2nd ed.Cham, Switzerland :Springer,[2021]©20211 online resource (408 pages)3-030-74337-3 Intro -- Preface -- Contents -- About the Author -- 1 Basic Concepts and Introduction to Blast Waves and Explosions -- 1.1 Noise and Disruption of Objects in an Explosion -- 1.1.1 Sound Waves -- 1.1.2 Finite Amplitude Waves -- 1.1.3 Wave with a Steep Front -- 1.1.4 Shock Waves -- 1.1.5 Compression Disturbances Intensifying to a Shock Wave -- 1.1.6 Expansion Waves -- 1.1.7 Role of Compressibility of the Medium -- 1.1.8 Wave Propagation and Not Matter Propagation -- 1.1.9 Blast Wave and Disruption of Objects -- 1.2 Types of Explosions -- 1.2.1 Naturally Occurring Explosions -- 1.2.2 Intentional Explosions -- 1.2.3 Accidental Explosions: Hazard -- 1.3 Typical Examples of Accidental Explosions -- 1.3.1 Texas City Disaster (April 16, 1947) -- 1.3.2 Beirut Explosion (August 4, 2020) -- 1.3.3 Explosion of Fuel Tank of Aircraft During Flight -- 1.3.4 Largest Man-Made Explosion: Ural Mountains, June 4, 1989 -- 1.3.5 Fireball and Blast in the Explosion at Crescent City, Illinois: June 2, 1970 -- 1.3.6 Explosion in a Bakery at Turin Involving Dust -- 1.3.7 Explosion in a Copper Smelter at Flin Flon, Canada -- 1.3.8 World's Worst Industrial Disaster: Bhopal Gas Tragedy (December 2/3, 1984) -- 1.3.9 Nuclear Explosions: Chernobyl (April 26, 1986) and Fukushima (March 11, 2011) -- 1.4 Classification of Explosions -- 2 Blast Waves in Air -- 2.1 Ideal Blast Wave -- 2.1.1 Ideal Blast Trajectory from Dimensional Considerations -- 2.2 Modeling of Parameters Across A Constant Velocity Shock -- 2.2.1 Rankine-Hugoniot Equations -- 2.2.2 Rayleigh Line and Properties Across a Shock Wave of Given Velocity S -- 2.2.3 Properties Behind a Shock of Mach Number MS -- 2.3 Change of Properties in a Blast Wave -- 2.3.1 Concentration of Mass at the Wave Front -- 2.3.2 Deviation from Wave Phenomenon -- 2.3.3 Decay of Blast Waves -- 2.3.4 Characteristic Length of Energy Release.Explosion Length -- 2.4 Predictions for Overpressures -- 2.4.1 Cranz-Hopkinson Scaling Law for Overpressure -- 2.4.2 Overpressure from a Strong Blast Wave -- 2.4.3 Smaller Values of Overpressures -- 2.5 Non-idealities of Source Influencing Overpressure -- 2.6 Pressure Variations in a Blast Wave: Impulse -- 2.6.1 Arrival Time and Mach Number of The Blast Wave at a Distance L from the Source -- 2.6.2 Impulse -- 2.6.3 Cranz-Hopkinson Law for Scaling Impulse -- 2.7 Missiles, Shrapnels, and Fragments from Blast -- Gurney Constant -- 2.8 Salient Features of Blast Waves -- 3 Interaction of Blast Waves with Rigid and Non-rigid Bodies -- 3.1 Reflection of Shock Waves from Non-yielding Surfaces -- 3.1.1 Normal Reflection -- 3.1.2 Oblique Reflection -- 3.2 Reflection and Transmission of Shocks from Yielding Surfaces -- 3.2.1 Mechanical Impedance of Medium and Determination of Reflected and Transmitted Waves -- 3.2.2 Formation of Expansion Waves -- 3.2.3 Spallation -- 3.2.4 Crushing of Kidney Stones in Humans -- 3.3 Reflection of a Blast Wave from the Ground: Formation of Multiple Shocks and a Mushroom Cloud -- 3.3.1 Craters -- 3.4 Multiple Pressure Spikes from a Finite Volume Explosion -- 3.5 Blast Waves in Water -- 3.5.1 Underwater Explosions and Associated Blast Wave -- 3.5.2 Explosions over Surface of Water -- 3.6 Absorption of Blast Wave Energy in Layered Structures -- 3.7 Role of Overpressure and Impulse on Damage from Blast Waves -- 4 Energy Release and Rate of Energy Release -- 4.1 Energy Release -- 4.1.1 Heat of Formation -- 4.1.2 Chemical Reactions and Energy Release -- 4.1.3 Stoichiometry, Fuel-Rich and Fuel-Lean Compositions -- Equivalence Ratio -- 4.1.4 Energy Release in a Stoichiometric Mixture of Fuel Vapor and Air -- 4.1.5 Generalized Procedure for Determining Energy Release.4.1.6 Influence of Variations in the Temperature And Pressure of the Reactants on Energy Release -- 4.1.7 Energy Release for Fuel-Lean (&lt -- 1) And Fuel-Rich (&gt -- 1) Compositions -- 4.2 Rate of Energy Release -- 4.2.1 Concentration, Law of Mass Action, And Activation Energy -- 4.2.2 Arrhenius Rate Equation -- 4.2.3 Rate of Chemical Reactions and Rate of Energy Release -- 5 Thermal Theory of Explosions -- 5.1 Formulation of Theory -- 5.1.1 Lumped Mass Assumption -- 5.1.2 Variations of Heat Release and Heat Loss Rates -- 5.1.3 Stable Temperature and Ignition Temperature -- 5.1.4 Critical Temperature and Auto-ignition -- 5.1.5 Changes of Ambient Temperature -- 5.2 Critical Conditions and Preheat -- 5.3 Characteristic Times of Heat Generation and Heat Loss -- 5.3.1 Characteristics of Heat Release From Chemical Reaction -- 5.3.2 Characteristic Time for Energy Release -- 5.3.3 Characteristic Heat Loss Time -- 5.4 Conditions for Explosion to Occur -- 5.5 Ignition and Auto-ignition -- 5.6 Induction Times and Nature Of Chemical Reactions -- 5.7 Branched Chain Explosions in Closed Vessels -- 5.7.1 First Explosion Limit -- 5.7.2 Second Explosion Limit -- 5.7.3 Third or Upper Explosion Limit -- 5.8 Limitations of Lumped Mass Assumption -- 6 Propagation of Reaction Front: Detonation, Deflagration and Quasi-Detonation -- 6.1 Propagation of One-Dimensional Combustion Waves: Reaction Hugoniot and Rayleigh Line -- 6.2 Physically Realizable States on Reaction Hugoniot: Detonations and Deflagrations -- 6.2.1 Chapman-Jouguet (CJ) Points -- 6.2.2 Detonation Branch of Hugoniot -- 6.2.3 Deflagration Branch -- 6.2.4 Realizable Combustion Waves -- 6.3 Detonations -- 6.3.1 Detonation Velocity VCJ and Pressure pCJ at the CJ Point U -- 6.3.2 One Dimensional Structure of a Detonation -- 6.3.3 ZND Structure of a Detonation.6.3.4 Detonation Cell and Multi-headed Detonation Front -- 6.4 Deflagration and Burning Velocities -- 6.4.1 Burning Velocity and Flame Speed -- 6.4.2 Thickness of Flame -- 6.4.3 Laminar and Turbulent Burning Velocities -- 6.4.4 Turbulent Flame Brush -- 6.4.5 Pressure Changes Across a Flame -- 6.5 Fast Flame at Lower Chapman-Jouguet Point: Sub CJ or Quasi Detonation -- 6.5.1 Velocity and Pressure in a Quasi Detonation -- 6.6 Detonations and Flames: Destructive Influence -- 7 Formation of Flames and Detonations in Gaseous Explosives -- 7.1 Initiation of Flame -- 7.1.1 Divergence and Loss -- 7.1.2 Quenching of Flame -- 7.1.3 Minimum Ignition Energy -- 7.1.4 Limits of Flammability -- 7.1.5 MIE and Flammability Limits -- 7.1.6 Low-Pressure Flammability Limits -- 7.1.7 Influence of Initial Temperature on Flammability Limits -- 7.1.8 Flammability Limit for a Mixture of Gases -- 7.1.9 Upward and Downward Flammability Limits -- 7.2 Minimum Oxygen Concentration: Maximum Safe Oxygen Concentration -- 7.3 Flammability Limits of Vapors From Volatile Liquids -- 7.3.1 Formation of Flammable Vapor-Air Mixture from Volatile Liquids -- 7.3.2 Flash and Fire Point Temperatures -- 7.4 Initiation of Detonation: Detonation Kernel -- 7.4.1 Requirement of Strong Shock Wave -- 7.4.2 Requirement of a Minimum Kernel for Detonation -- 7.4.3 Detonation Kernel in Analogy to Flame Kernel: Energy Required -- 7.4.4 Limits of Detonation -- 7.5 Transition of Flame to Detonation -- 8 Condensed Phase Explosions -- 8.1 Hydrocarbon Fuels Constituting Condensed Phase Explosives -- 8.1.1 Single, Double, and Triple Bonds -- 8.1.2 Alkanes, Alkenes, Alkynes, and Alkadienes -- 8.1.3 Aromatic Structure: Benzene -- 8.1.4 General Classification of Hydrocarbons -- 8.2 Explosives from Hydrocarbons -- 8.2.1 Nitromethane, Nitroglycerine, and Nitroglycol from Aliphatic Hydrocarbons.8.2.2 Nitrocellulose from Cellulose -- 8.2.3 Penta Erythritol Tetra Nitrate (PETN) from Straight Chain Aliphatic Compound -- 8.2.4 RDX and HMX from Cyclo-Aliphatic Hydrocarbons -- 8.2.5 Trinitrotoluene (TNT) from Aromatic Benzene Ring -- 8.2.6 Picric Acid (PA) from Phenyl -- 8.2.7 Tetryl -- 8.2.8 TATB -- 8.3 Explosives with Radicals of Azide, Fulminate, Acetylide, and Stephnate with Metals -- 8.4 Inorganic Explosives: Black Powder -- 8.5 Characteristics of Explosive Compositions -- 8.5.1 Enhancing Oxygen Content by Addition of Oxygen-Rich Compounds: AN-NM Slurry, ANFO, Gelatine Dynamite -- 8.5.2 Reduction in Oxygen Content: Plastic Explosives -- 8.6 Volume of Gas Generated from Condensed Explosives: Explosion Severity, Pyrotechnic Compositions, Thermites -- 8.7 Deflagration and Detonation of Condensed Explosives -- 8.7.1 Deflagration in Confined and Unconfined Spaces -- 8.7.2 Detonation in Confined and Unconfined Spaces -- 8.7.3 Detonation and Heterogeneity of the Explosive -- 8.8 Parameters of Explosive Influencing Detonation -- Classification in Four Categories -- 8.9 High Values of Activation Energies -- 8.10 Ease of Formation of Detonation in Condensed Explosives -- 8.11 Low Explosives, Primary Explosives, and Secondary Explosives -- 8.12 Overall Classification of Condensed Explosives -- 9 Unconfined and Confined Gas Phase Explosions -- 9.1 Unconfined Explosions -- 9.2 Confined Explosions -- 9.2.1 Maximum Explosion Pressure -- 9.2.2 Violence or Rate of Pressure Rise -- 9.3 Methods of Decreasing Maximum Pressure and Maximum Rate of Pressure Rise -- 9.3.1 Relief Venting -- 9.3.2 Halons -- Suppression of Rate of Pressure Rise -- 9.4 Maximum Experimental Safety Gap -- 9.4.1 Enclosures Joined by Pipes -- 9.5 Partial Confinement -- 9.6 Sequence of Events in Typical Unconfined and Confined Explosions.9.6.1 Largest Man-made Unconfined NG Explosion: Ural Mountains.ExplosionsMathematical modelsExplosionsMathematical models.541.361Ramamurthi K.971596MiAaPQMiAaPQMiAaPQBOOK9910485597103321Modeling Explosions and Blast Waves2208945UNINA