03001nam 2200601 450 991048416300332120220820081349.03-540-73705-710.1007/978-3-540-73705-6(CKB)1000000000437256(SSID)ssj0000317509(PQKBManifestationID)11208025(PQKBTitleCode)TC0000317509(PQKBWorkID)10289356(PQKB)10450866(DE-He213)978-3-540-73705-6(MiAaPQ)EBC3062195(MiAaPQ)EBC6819150(Au-PeEL)EBL6819150(OCoLC)1287131243(PPN)123739292(EXLCZ)99100000000043725620220820d2008 uy 0engurnn|008mamaatxtccrEntropy methods for the Boltzmann equation lectures from a special semester at the Centre Émile Borel, Institut H. Poincaré, Paris, 2001 /Fraydoun Rezakhanlou, Cédric Villani ; editors, François Golse, Stefano Olla1st ed. 2008.Berlin ;Heidelberg ;New York :Springer,[2008]©20081 online resource (XII, 113 p.) Lecture notes in mathematics ;1916Bibliographic Level Mode of Issuance: Monograph3-540-73704-9 Includes bibliographical references and index.Entropy and entropy production have recently become mathematical tools for kinetic and hydrodynamic limits, when deriving the macroscopic behaviour of systems from the interaction dynamics of their many microscopic elementary constituents at the atomic or molecular level. During a special semester on Hydrodynamic Limits at the Centre Émile Borel in Paris, 2001 two of the research courses were held by C. Villani and F. Rezakhanlou. Both illustrate the major role of entropy and entropy production in a mutual and complementary manner and have been written up and updated for joint publication. Villani describes the mathematical theory of convergence to equilibrium for the Boltzmann equation and its relation to various problems and fields, including information theory, logarithmic Sobolev inequalities and fluid mechanics. Rezakhanlou discusses four conjectures for the kinetic behaviour of the hard sphere models and formulates four stochastic variations of this model, also reviewing known results for these.Lecture notes in mathematics (Springer-Verlag) ;1916.Transport theoryTransport theory.530.138Rezakhanlou Fraydoun472514Villani Cédric1973-Golse FrançoisOlla Stefano1959-MiAaPQMiAaPQMiAaPQBOOK9910484163003321Entropy methods for the Boltzmann equation230592UNINA01292nam0-2200421---450-99000074432020331620090114112840.088-430-1276-2IT2000-37780074432USA010074432(ALEPH)000074432USA01007443220011115d2000----y0itay0103 baitaIT00|||Che cos'è la globalizzazionerischi e prospettive della società planetariaUlrich Beck[traduzione di Emanuele Cafagna, Carlo Sandrelli]RomaCarocci2000198 p.22 cmArgomenti17Was ist Globalisierung?2001Argomenti172001Was ist Globalisierung?13706Economia mondiale337.09045BECK,Ulrich119835ITBNI20000728RICA990000744320203316337.090 BEC 1 (IEP III 711)29759 G.IEP III00074593BKECOANGELA9020011115USA01103720020403USA011722PATRY9020040406USA011651RSIAV39020090114USA011128Was ist Globalisierung13706UNISA