01206nam a2200313 i 450099100289081970753620020503174619.0000704s1963 it ||| | ita b10429220-39ule_instEXGIL111586ExLBiblioteca Interfacoltàita945.8271De Rosa, Gabriele33637I gesuiti in Sicilia e la rivoluzione del '48 :con documenti sulla condotta della Compagnia di Gesù e scritti inediti di Luigi Taparelli d'Azeglio /Gabriele De RosaRoma :Edizioni di Storia e letteratura,1963304 p. ;25 cm.Politica e storia ;8GesuitiSicilia1848-1849SiciliaStoria1848-1849Taparelli d'Azeglio, Luigi.b1042922021-02-1727-06-02991002890819707536LE002 945.8 DERLE002 945.8 DERLE002 St. I N 2012002000565938le002-E0.00-l- 02420.i1049859x27-06-02Gesuiti in Sicilia e la rivoluzione del '48219422UNISALENTOle00201-01-00ma -itait 2102744nam 22005895 450 991048374920332120251113180916.09783642182310364218231310.1007/978-3-642-18231-0(CKB)2670000000076212(SSID)ssj0000506050(PQKBManifestationID)11313189(PQKBTitleCode)TC0000506050(PQKBWorkID)10529420(PQKB)10391601(DE-He213)978-3-642-18231-0(MiAaPQ)EBC3066490(PPN)151591326(EXLCZ)99267000000007621220110301d2011 u| 0engurnn#008mamaatxtccrRandom Perturbation of PDEs and Fluid Dynamic Models École d’Été de Probabilités de Saint-Flour XL – 2010 /by Franco Flandoli1st ed. 2011.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2011.1 online resource (X, 182 p. 10 illus.)École d'Été de Probabilités de Saint-Flour ;2015Bibliographic Level Mode of Issuance: Monograph9783642182303 3642182305 Includes bibliographical references.1. Introduction to Uniqueness and Blow-up -- 2. Regularization by Additive Noise -- 3. Dyadic Models -- 4. Transport Equation -- 5. Other Models. Uniqueness and Singularities.This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.École d'Été de Probabilités de Saint-Flour ;2015ProbabilitiesProbability TheoryProbabilities.Probability Theory.515.39260H1560H1060J6535R6035Q3535B4476B03mscFlandoli Franco314270MiAaPQMiAaPQMiAaPQBOOK9910483749203321Random perturbation of PDEs and fluid dynamic models261810UNINA