01465oam 2200313z- 450 991016074730332120180703095948.02-336-38997-5(CKB)3810000000043770(PPN)193734001(BIP)065561713(VLeBooks)9782336389974(EXLCZ)99381000000004377020220524c2015uuuu -u- -gerCorps-a-Corps Oeuvre-Public: L'experience Des Installations InteractivesEditions L'Harmattan20151 online resource (278 p.) ill2-343-06709-0 Ce livre s'interesse particulierement a l'installation interactive sous toutes ses formes, de la scenographie aux jeux artistiques a realites alternees. Si l'etude de l'art interactif n'est pas nouvelle, notre approche originale consiste a etudier les fondements biologiques, psychologiques et culturels de sa reception. Le resultat de cette etude consiste a proposer une typologie des oeuvres interactives et de leurs publics mais aussi a proposer aux acteurs institutionnels des mediations creatrices adaptees au public vise.Interactive artInstallations (Art)Interactive art.Installations (Art)Lejeune1745685BOOK9910160747303321Corps-a-Corps Oeuvre-Public: L'experience Des Installations Interactives4176887UNINA03689nam 2200565 a 450 991048341630332120200520144314.03-540-30137-210.1007/b104035(CKB)1000000000212648(SSID)ssj0000204702(PQKBManifestationID)11172535(PQKBTitleCode)TC0000204702(PQKBWorkID)10188717(PQKB)10671856(DE-He213)978-3-540-30137-0(MiAaPQ)EBC3068434(PPN)13412359X(EXLCZ)99100000000021264820041027d2004 uy 0engurnn|008mamaatxtccrModular algorithms in symbolic summation and symbolic integration /Jurgen Gerhard1st ed. 2005.Berlin ;New York Springerc20041 online resource (XVI, 228 p.) Lecture notes in computer science,0302-9743 ;3218Bibliographic Level Mode of Issuance: Monograph3-540-24061-6 Includes bibliographical references (p. [207]-216) and index.1. Introduction -- 2. Overview -- 3. Technical Prerequisites -- 4. Change of Basis -- 5. Modular Squarefree and Greatest Factorial Factorization -- 6. Modular Hermite Integration -- 7. Computing All Integral Roots of the Resultant -- 8. Modular Algorithms for the Gosper-Petkovšek Form -- 9. Polynomial Solutions of Linear First Order Equations -- 10. Modular Gosper and Almkvist & Zeilberger Algorithms.This work brings together two streams in computer algebra: symbolic integration and summation on the one hand, and fast algorithmics on the other hand. In many algorithmically oriented areas of computer science, theanalysisof- gorithms–placedintothe limelightbyDonKnuth’stalkat the 1970ICM –provides a crystal-clear criterion for success. The researcher who designs an algorithmthat is faster (asymptotically, in the worst case) than any previous method receives instant grati?cation: her result will be recognized as valuable. Alas, the downside is that such results come along quite infrequently, despite our best efforts. An alternative evaluation method is to run a new algorithm on examples; this has its obvious problems, but is sometimes the best we can do. George Collins, one of the fathers of computer algebra and a great experimenter,wrote in 1969: “I think this demonstrates again that a simple analysis is often more revealing than a ream of empirical data (although both are important). ” Within computer algebra, some areas have traditionally followed the former methodology, notably some parts of polynomial algebra and linear algebra. Other areas, such as polynomial system solving, have not yet been amenable to this - proach. The usual “input size” parameters of computer science seem inadequate, and although some natural “geometric” parameters have been identi?ed (solution dimension, regularity), not all (potential) major progress can be expressed in this framework. Symbolic integration and summation have been in a similar state.Lecture notes in computer science ;3218.Computer algorithmsIntegralsComputer algorithms.Integrals.005.154.10bclGerhard Jurgen1967-771780MiAaPQMiAaPQMiAaPQBOOK9910483416303321Modular algorithms in symbolic summation and symbolic integration4204311UNINA