02724nam 2200673 450 991048330850332120220822081347.01-280-96017-597866109601703-540-73324-810.1007/978-3-540-73324-9(CKB)1000000000437254(EBL)3061608(SSID)ssj0000193741(PQKBManifestationID)11166274(PQKBTitleCode)TC0000193741(PQKBWorkID)10226839(PQKB)10139503(DE-He213)978-3-540-73324-9(MiAaPQ)EBC3061608(MiAaPQ)EBC6819790(Au-PeEL)EBL6819790(OCoLC)184906575(PPN)123163269(EXLCZ)99100000000043725420220822d2007 uy 0engur|n|---|||||txtccrLocal newforms for GSp(4) /Brooks Roberts, Ralf Schmidt1st ed. 2007.Berlin ;Heidelberg ;New York :Springer,[2007]©20071 online resource (310 p.)Lecture notes in mathematics (Springer-Verlag) ;1918Description based upon print version of record.3-540-73323-X Includes bibliographical references and index.A Summary -- Representation Theory -- Paramodular Vectors -- Zeta Integrals -- Non-supercuspidal Representations -- Hecke Operators -- Proofs of the Main Theorems.Local Newforms for GSp(4) describes a theory of new- and oldforms for representations of GSp(4) over a non-archimedean local field. This theory considers vectors fixed by the paramodular groups, and singles out certain vectors that encode canonical information, such as L-factors and epsilon-factors, through their Hecke and Atkin-Lehner eigenvalues. While there are analogies to the GL(2) case, this theory is novel and unanticipated by the existing framework of conjectures. An appendix includes extensive tables about the results and the representation theory of GSp(4).Lecture notes in mathematics (Springer-Verlag) ;1918.Representations of groupsAutomorphic formsHecke operatorsRepresentations of groups.Automorphic forms.Hecke operators.512.2Roberts Brooks1964-472511Schmidt Ralf1968-MiAaPQMiAaPQMiAaPQBOOK9910483308503321Local newforms for GSp(4230579UNINA