00792nam 2200253la 450 991048112300332120210618142922.0(UK-CbPIL)2090323463(CKB)5500000000083114(EXLCZ)99550000000008311420210618d1475 uy |laturcn||||a|bb|De horis canonicis[electronic resource]Rome Bartholomaeus Guldinbeck, fl. 1475-14881475Online resource (v.)Reproduction of original in Biblioteca Nazionale Centrale di Firenze.Ferrariis Albertus deactive 15th century.36508Uk-CbPILUk-CbPILBOOK9910481123003321De horis canonicis2114351UNINA01595nam a2200337Ii 4500991001260039707536110609s1998 si b 001 0 eng d9810235445b13986454-39ule_instDip.to Matematicaeng515.7LC QA431S131AMS 39BAMS 39-02AMS 26A24AMS 26E60Sahoo, P. K.475192Mean value theorems and functional equations /P. K. Sahoo, T. RiedelSingapore ;River Edge, N. J. :World Scientific,c1998xii, 245 :ill. ;23 cmIncludes bibliographical references (p. 233-241) and index1. Additive and biadditive functions -- 2. Langrange's mean value theorem and related functional equations -- 3. Pompeiu's mean value theorem and associated functional equations -- 4. Two-dimensional mean value theorems and functional equations -- 5. Some generalizations of Langrange's mean value theorem -- 6. Mean value theorems for some generalized derivatives -- 7. Some integral mean value theorems and related topics.Functional equationsMean value theorems (Calculus)Riedel, T..b1398645428-01-1409-06-11991001260039707536LE013 39B SAH11 (1998)12013000214085le013pE46.29-l- 01010.i1528909628-06-11Mean value theorems and functional equations247985UNISALENTOle01309-06-11ma -engsi 00