03141nam 2200589 450 991048105220332120180731043559.01-4704-0329-3(CKB)3360000000464920(EBL)3114546(SSID)ssj0000973220(PQKBManifestationID)11582510(PQKBTitleCode)TC0000973220(PQKBWorkID)10959861(PQKB)11370972(MiAaPQ)EBC3114546(PPN)195416228(EXLCZ)99336000000046492020010814h20022002 uy| 0engur|n|---|||||txtccrHomotopy theory of diagrams /Wojciech Chachólski, Jérôme SchererProvidence, Rhode Island :American Mathematical Society,[2002]©20021 online resource (106 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 736Description based upon print version of record.0-8218-2759-6 Includes bibliographical references (pages 87-88) and index.""Contents""; ""Introduction""; ""Chapter I. Model approximations and bounded diagrams""; ""1. Notation""; ""2. Model categories""; ""3. Left derived functors""; ""4. Left derived functors of colimits and left Kan extensions""; ""5. Model approximations""; ""6. Spaces and small categories""; ""7. The pull-back process and local properties""; ""8. Colimits of diagrams indexed by spaces""; ""9. Left Kan extensions""; ""10. Bounded diagrams""; ""Chapter II. Homotopy theory of diagrams""; ""11. Statements of the main results""; ""12. Cofibrations""; ""13. Fun[sup(b)](K,M) as a model category""""28. Diagrams indexed by cones II""""30. Cofinality""; ""31. Homotopy limits""; ""Appendix A. Left Kan extensions preserve boundedness""; ""32. Degeneracy Map""; ""33. Bounded diagrams and left Kan extensions""; ""Appendix B. Categorical Preliminaries""; ""34. Categories over and under an object""; ""35. Relative version of categories over and under an object""; ""36. Pull-back process and Kan extensions""; ""37. Cofinality for colimits""; ""38. Grothendieck construction""; ""39. Grothendieck construction & the pull-back process""; ""40. Functors indexed by Grothendieck constructions""""Bibliography""""Index""; ""A""; ""B""; ""C""; ""D""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""W""Memoirs of the American Mathematical Society ;no. 736.Homotopy theoryCategories (Mathematics)Electronic books.Homotopy theory.Categories (Mathematics)510 s514/.24Chachólski Wojciech1968-992772Scherer Jérôme1969-MiAaPQMiAaPQMiAaPQBOOK9910481052203321Homotopy theory of diagrams2273282UNINA