01127nam--2200373---450-99000126575020331620031119134149.0000126575USA01000126575(ALEPH)000126575USA0100012657520031119d1983----km-y0itay0103----baengGBa|||||||001yy<<A>> legacy from victorian enterprisethe Briton Ferry Ironworks and the daughter companiesC. W. RobertsGloucesterStutton1983X, 277 p.ill.21 cm.20012001001-------2001FerroIndustriaGran BretagnaStoria1845-1930AcciaioIndustriaGran Bretagna1845-1930669.1ROBERTS,C. W.556994ITsalbcISBD990001265750203316669.1 ROB20217 Ing.ROBBKTECSIAV41020031119USA011341PATRY9020040406USA011730Legacy from victorian enterprise987077UNISA03401nam 2200625 450 991048104920332120180613002136.01-4704-1530-5(CKB)3710000000230213(EBL)3114200(SSID)ssj0001108988(PQKBManifestationID)11643290(PQKBTitleCode)TC0001108988(PQKBWorkID)11109855(PQKB)11629100(MiAaPQ)EBC3114200(PPN)195408616(EXLCZ)99371000000023021320150417h20132013 uy 0engur|n|---|||||txtccrSemiclassical standing waves with clustering peaks for nonlinear Schrödinger equations /Jaeyoung Byeon, Kazunaga TanakaProvidence, Rhode Island :American Mathematical Society,2013.©20131 online resource (104 p.)Memoirs of the American Mathematical Society,1947-6221 ;Volume 229, Number 1076"Volume 229, Number 1076 (third of 5 numbers)."0-8218-9163-4 Includes bibliographical references.""4.1. A choice of parameters and minimization""""4.2. Invariant new neighborhoods""; ""4.3. Width of a set Ì? ( â€?, â€?)â??Ì? ( â€?, â€?)""; ""Chapter 5. A gradient estimate for the energy functional""; ""5.1. -dependent concentration-compactness argument""; ""5.2. A gradient estimate""; ""5.3. Gradient flow of the energy functional Î?_{ }""; ""Chapter 6. Translation flow associated to a gradient flow of ( ) on \R^{ }""; ""6.1. A pseudo-gradient flow on \overline{ }_{3 â?€}( )^{â??â?€} associated to ( â??)+\cdots+ ( _{â??â?€})""""6.2. Definition of a translation operator""""6.3. Properties of the translation operator""; ""Chapter 7. Iteration procedure for the gradient flow and the translation flow""; ""Chapter 8. An ( +1)â??â?€-dimensional initial path and an intersection result""; ""8.1. A preliminary path â?€""; ""8.2. An initial path _{1 }""; ""8.3. An intersection property""; ""Chapter 9. Completion of the proof of Theorem 1.3""; ""Chapter 10. Proof of Proposition 8.3""; ""10.1. An interaction estimate""; ""10.2. Preliminary asymptotic estimates""; ""10.3. Proof of Proposition 10.1""""Chapter 11. Proof of Lemma 6.1""""Chapter 12. Generalization to a saddle point setting""; ""12.1. Saddle point setting""; ""12.2. Proof of Theorem 12.1""; ""Acknowledgments""; ""Bibliography""Memoirs of the American Mathematical Society ;Volume 229, Number 1076.Gross-Pitaevskii equationsSchrödinger equationStanding wavesCluster analysisElectronic books.Gross-Pitaevskii equations.Schrödinger equation.Standing waves.Cluster analysis.530.12/4Byeon Jaeyoung1966-963701Tanaka Kazunaga1959-MiAaPQMiAaPQMiAaPQBOOK9910481049203321Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations2185010UNINA00976nam a2200277 i 450099100088959970753620020507102825.0951124s1975 de ||| | eng b10143944-39ule_instLE00638635ExLDip.to Fisicaita510'.8510(022:076)510.34QA1Braun, M.344583Differential equations and their applications :an introduction to applied mathematics /M. BraunBerlin :Springer,1975xiv, 718 p. :ill. ;24 cm.Differential equations.b1014394421-09-0627-06-02991000889599707536LE006 510.34/510.39 BRA12006000021159le006-E0.00-l- 03030.i1017128927-06-02Differential equations and their applications186918UNISALENTOle00601-01-95ma -engde 01