01069nam0 2200289 i 450 SUN005218020180418024446.842978-88-08-02662-00.0020060913d1988 |0itac50 baitaIT|||| |||||Programmare in BasicThomas C. Bartee2. edBolognaZanichelli1988XII, 351 p.24 cm.001SUN00372942001 Collana di scienza dei calcolatori210 BolognaZanichelli.SUN0080540Basic. Computer Programming.68-XXComputer science [MSC 2020]MFSUNC019670BolognaSUNL000003Bartee, Thomas C.SUNV041066143ZanichelliSUNV004332650ITSOL20200713RICASUN0052180UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 68-XX 0265 08 2280 I 20060913 Programmare in BASIC190440UNICAMPANIA03572nam 2200577 450 991048093910332120170816143254.01-4704-0317-X(CKB)3360000000464908(EBL)3114380(SSID)ssj0000973403(PQKBManifestationID)11616159(PQKBTitleCode)TC0000973403(PQKBWorkID)10961183(PQKB)11241104(MiAaPQ)EBC3114380(PPN)195416104(EXLCZ)99336000000046490820010320d2001 uy| 0engur|n|---|||||txtccrNon-uniform lattices on uniform trees /Lisa CarboneProvidence, Rhode Island :American Mathematical Society,2001.1 online resource (146 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 724"July 2001, volume 152, number 724 (end of volume)."0-8218-2721-9 Includes bibliographical references.""Contents""; ""0. Introduction""; ""1. Graphs of groups, tree actions and edge-indexed graphs""; ""1.1 Graphs of groups""; ""1.2 Group actions on trees and quotient graphs of groups""; ""1.3 Edge-indexed graphs and their groupings""; ""1.4 Existence of finite groupings""; ""2. Aut(X) and its discrete subgroups""; ""2.1 Tree lattices""; ""2.2 The group G[sub(H)] of deck transformations""; ""2.3 Constructing tree lattices""; ""3. Existence of tree lattices""; ""3.1 Locally compact groups and their lattices""; ""3.2 Lattice Existence Theorem""""3.3 Existence of non-uniform lattices on uniform trees""""3.4 Existence of non-uniform coverings""; ""4. Non-uniform coverings of indexed graphs with an arithmetic bridge""; ""4.1 Geometric and arithmetic bridges in indexed graphs""; ""4.2 Changing the ramification factor of an arithmetic bridge""; ""4.3 Gluing unimodular subgraphs along connected intersections""; ""4.4 Open fanning of arithmetic bridges""; ""4.5 Indexed topological coverings""; ""4.6 Step 1 - Schematic diagram""; ""4.7 Step 2 - Construct topological covering""; ""4.8 Step 3 - Change the ramification factor""""4.9 Step 4 - Construct rectangles""""4.10 Step 5 - Glue rectangles iteratively""; ""4.11 Step 6 - Adjoin bridges""; ""4.12 Step 7 - Multiple open fanning""; ""4.13 Edge with a common factor implies non-uniform covering""; ""5. Non-uniform coverings of indexed graphs with a separating edge""; ""6. Non-uniform coverings of indexed graphs with a ramified loop""; ""7. Eliminating multiple edges""; ""7.1 Simplification of a graph with no loops""; ""7.2 Graphs with multiplicities""; ""7.3 Reduced factorization of an indexed graph""""7.4 Canonical simplification of a unimodular indexed graph with no loops""""8. Existence of arithmetic bridges""; ""8.1 Unramified Loops""; ""8.2 Completion""; ""8.3 Suspension""; ""8.4 Restriction""; ""Bibliography""Memoirs of the American Mathematical Society ;no. 724.Lattice theoryTrees (Graph theory)Electronic books.Lattice theory.Trees (Graph theory)510 s511.3/3Carbone Lisa1965-992144MiAaPQMiAaPQMiAaPQBOOK9910480939103321Non-uniform lattices on uniform trees2271196UNINA