01520nam0 2200349 i 450 SUN012324120200421103528.7560.00N978981106135620190910d2017 |0engc50 baengSG|||| |||||*Multifunctional Molecular Magnets Based on OctacyanidometalatesDoctoral Thesis accepted by The University of Tokyo, Tokyo, JapanKenta ImotoSingapore : Springer, 2017XIII89 p.ill. ; 24 cmPubblicazione in formato elettronico001SUN01041932001 *Springer thesesrecognizing outstanding Ph.D. research210 BerlinHeidelbergSpringer.SGSingaporeSUNL000061621.36Ingegneria ottica. Ottica applicata22540Chimica generale22546Chimica inorganica22541Chimica fisica22538Magnetismo22Imoto, KentaSUNV094635766969SpringerSUNV000178650ITSOL20200921RICAhttps://link.springer.com/book/10.1007%2F978-981-10-6135-6SUN0123241UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE17CONS e-book 2111 17BIB2111 14 20190910 Multifunctional Molecular Magnets Based on Octacyanidometalates1561050UNICAMPANIA03313nam 2200625 450 991048086990332120170822144517.01-4704-0288-2(CKB)3360000000464881(EBL)3114367(SSID)ssj0000973529(PQKBManifestationID)11581306(PQKBTitleCode)TC0000973529(PQKBWorkID)10959905(PQKB)10436064(MiAaPQ)EBC3114367(PPN)195415825(EXLCZ)99336000000046488120000505d2000 uy| 0engur|n|---|||||txtccrFrames, bases, and group representations /Deguang Han, David R. LarsonProvidence, Rhode Island :American Mathematical Society,2000.1 online resource (111 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 697"September 2000, volume 147, number 697 (first of 4 numbers)."0-8218-2067-2 Includes bibliographical references (pages 93-94).""Contents""; ""Abstract""; ""Introduction""; ""Chapter 1. Basic Theory for Frames""; ""1.1. A Dilation Viewpoint on Frames""; ""1.2. The Canonical Dual Frame""; ""1.3. Alternate Dual Frames""; ""Chapter 2. Complementary Frames and Disjointness""; ""2.1. Strong Disjointness, Disjointness and Weak Disjointness""; ""2.2. Characterizations of Equivalence and Disjointness""; ""2.3. Cuntz Algebra Generators""; ""2.4. More on Alternate Duals""; ""Chapter 3. Frame Vectors for Unitary Systems""; ""3.1. The Local Commutant and Frame Vectors""; ""3.2. Dilation Theorems for Frame Vectors""""3.3. Equivalence Classes of Frame Vectors""""Chapter 4. Gabor Type Unitary Systems""; ""Chapter 5. Frame Wavelets, Super-wavelets and Frame Sets""; ""5.1. Frame Sets""; ""5.2. Super-wavelets""; ""5.3. A Characterization of Super-wavelets""; ""5.4. Some Frazier-Jawerth Frames""; ""5.5. MRA Super-wavelets""; ""5.6. Interpolation Theory""; ""Chapter 6. Frame Representations for Groups""; ""6.1. Basics""; ""6.2. Frame Multiplicity""; ""6.3. Parameterizations of Frame Vectors""; ""6.4. Disjoint Group Representations""; ""Chapter 7. Concluding Remarks""; ""7.1. Spectral families of frames:""""7.2. A Joint Project with Pete Casazza""""7.3. A Matrix Completion Characterization of Frames""; ""7.4. Some Acknowledgements""; ""7.5. Density and Connectivity of Gabor Type Frames""; ""Bibliography""Memoirs of the American Mathematical Society ;no. 697.Frames (Vector analysis)Operator theoryWavelets (Mathematics)Representations of groupsElectronic books.Frames (Vector analysis)Operator theory.Wavelets (Mathematics)Representations of groups.510 s515/.63Han Deguang1959-311204Larson David R.1942-MiAaPQMiAaPQMiAaPQBOOK9910480869903321Frames, bases, and group representations2122793UNINA