01053nam0-22003011i-450-99000882505040332120090316161705.0000882505FED01000882505(Aleph)000882505FED0100088250520090316d1913----km-y0itay50------baitay-------001yyCodice delle antichità e degli oggetti d'arteraccolta di leggi, decreti, regolamenti, circolari relativi allaconservazione delle cose di interesse storico-artistico e alla difesa delle bellezze naturaliLuigi ParpaglioloRomaIstituto Poligrafico dello Stato19132 v.22 cmPatrimonio artisticoTutelaLegislazione932342069.5Parpagliolo,Luigi<1862-1953>24344ITUNINARICAUNIMARCBK990008825050403321VI Z 12 (1-2)3017FGBCFGBCCodice delle antichità e degli oggetti d'arte327711UNINA02419nam 2200565 450 991048076870332120180731045352.01-4704-0637-3(CKB)3360000000464417(EBL)3113547(SSID)ssj0000910355(PQKBManifestationID)11486551(PQKBTitleCode)TC0000910355(PQKBWorkID)10932361(PQKB)10506373(MiAaPQ)EBC3113547(PPN)195411161(EXLCZ)99336000000046441719800512h19801980 uy| 0engur|n|---|||||txtccrAll compact orientable three dimensional manifolds admit total foliations /Detlef HardorpProvidence, Rhode Island :American Mathematical Society,[1980]©19801 online resource (84 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 233Volume 26 ... (first of two numbers).""A slightly revised version of the author's Ph.D thesis (Princeton, 1978)."0-8218-2233-0 Bibliography: pages 74.""Table of Contents""; ""Chapter 1 : Total foliations for n dimensional manifolds""; ""Chapter 2 :""; ""Part 1 : Examples of total foliations of the two dimensional torus (T[sup(2)])""; ""Part 2 : Cubical decompositions and triangulations of three manifolds""; ""Chapter 3 : Some simple examples of total foliations for T[sup(3)], S[sup(2)] x S[sup(1)], and S[sup(3)]""; ""Chapter 4 : Constructing total foliations for all oriented circle bundles over two manifolds""; ""Part 1 : The trivial bundle""; ""Part 2 : A circle of foliations in the unit tangent space of a hyperbolic two manifold""Memoirs of the American Mathematical Society ;no. 233.Foliations (Mathematics)Three-manifolds (Topology)Electronic books.Foliations (Mathematics)Three-manifolds (Topology)510 s514/.72Hardorp Detlef1044733MiAaPQMiAaPQMiAaPQBOOK9910480768703321All compact orientable three dimensional manifolds admit total foliations2470537UNINA