04654nam 2200601 450 991048063730332120170822123752.01-4704-0309-9(CKB)3360000000464900(EBL)3114407(SSID)ssj0000976564(PQKBManifestationID)11528130(PQKBTitleCode)TC0000976564(PQKBWorkID)11019711(PQKB)11125111(MiAaPQ)EBC3114407(PPN)195416023(EXLCZ)99336000000046490020010109d2001 uy| 0engur|n|---|||||txtccrStable homotopy over the Steenrod algebra /John H. PalmieriProvidence, Rhode Island :American Mathematical Society,2001.1 online resource (193 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 716"Volume 151, number 716 (second of 5 numbers)."0-8218-2668-9 Includes bibliographical references and index.""Contents""; ""List of Figures""; ""Preface""; ""Chapter 0. Preliminaries""; ""0.1. Grading and other conventions""; ""0.2. Hopf algebras""; ""0.3. Modules and comodules""; ""0.4. Homological algebra""; ""0.5. Two small examples""; ""Chapter 1. Stable homotopy over a Hopf algebra""; ""1.1. The category Stable(Î?)""; ""1.2. The functor H""; ""1.2.1. Remarks on Hopf algebra extensions""; ""1.3. Some classical homotopy theory""; ""1.4. The Adams spectral sequence""; ""1.5. Bousfield classes and Brown-Comenetz duality""; ""1.6. Further discussion""""Chapter 2. Basic properties of the Steenrod algebra""""2.1. Quotient Hopf algebras of A""; ""2.1.1. Quasi-elementary quotients of A""; ""2.2. P[sup(s)][sub(t)]-homology""; ""2.2.1. Miscellaneous results about P[sup(s)][sub(t)]-homology""; ""2.3. Vanishing lines for homotopy groups""; ""2.3.1. Proof of Theorems 2.3.1 and 2.3.2 when p = 2""; ""2.3.2. Changes necessary when p is odd""; ""2.4. Self-maps via vanishing lines""; ""2.5. Construction of spectra of specified type""; ""2.6. Further discussion""; ""Chapter 3. Chromatic structure""; ""3.1. Margolis' killing construction""""3.2. A Tate version of the functor H""""3.3. Chromatic convergence""; ""3.4. Further discussion: work of Mahowald and Shick""; ""3.5. Further discussion""; ""Chapter 4. Computing Ext with elements inverted""; ""4.1. The q[sub(n)]-based Adams spectral sequence""; ""4.2. The Q[sub(n)]-based Adams spectral sequence""; ""4.3. A(n) as an A-comodule""; ""4.4. 1/2A(n) satisfies the vanishing plane condition""; ""4.5. 1/2A(n) generates the expected thick subcategory""; ""4.5.1. The proof of Proposition 4.5.7""; ""4.6. Some computations and applications""""4.6.1. Computation of (Q[sub(n)])[sub(**)](Q[sub(n)])""""4.6.2. Eisen's calculation""; ""4.6.3. The Ï?[sub(1)]-inverted Ext of the mod 2 Moore spectrum""; ""Chapter 5. Quillen stratification and nilpotence""; ""5.1. Statements of theorems""; ""5.1.1. Quillen stratification""; ""5.1.2. Nilpotence""; ""5.2. Nilpotence and F-isomorphism via the Hopf algebra D""; ""5.2.1. Nilpotence: Proof of Theorem 5.1.5""; ""5.2.2. F-isomorphism: Proof of Theorem 5.1.2""; ""5.3. Nilpotence and F-isomorphism via quasi-elementary quotients""; ""5.3.1. Nilpotence: Proof of Theorem 5.1.6""""5.3.2. F-isomorphism: Proof of Theorem 5.1.3""""5.4. Further discussion: nilpotence at odd primes""; ""5.5. Further discussion: miscellany""; ""Chapter 6. Periodicity and other applications of the nilpotence theorems""; ""6.1. The periodicity theorem""; ""6.2. y-maps and their properties""; ""6.3. Properties of ideals""; ""6.4. The proof of the periodicity theorem""; ""6.5. Computation of some invariants in HD[sub(**)]""; ""6.6. Computation of a few Bousfield classes""; ""6.7. Ideals and thick subcategories""; ""6.7.1. The thick subcategory conjecture""; ""6.7.2. Rank varieties""""6.8. Further discussion: slope supports""Memoirs of the American Mathematical Society ;no. 716.Homotopy theorySteenrod algebraElectronic books.Homotopy theory.Steenrod algebra.510 s514/.24Palmieri John H(John Harold),1964-917929MiAaPQMiAaPQMiAaPQBOOK9910480637303321Stable homotopy over the Steenrod algebra2058231UNINA