02713nam 2200577 450 991048059770332120170822144213.01-4704-0266-1(CKB)3360000000464859(EBL)3114394(SSID)ssj0000889187(PQKBManifestationID)11523073(PQKBTitleCode)TC0000889187(PQKBWorkID)10876271(PQKB)11359393(MiAaPQ)EBC3114394(PPN)195415590(EXLCZ)99336000000046485919990719h19991999 uy| 0engur|n|---|||||txtccrRenormalized self-intersection local times and Wick power chaos processes /Michael B. Marcus, Jay RosenProvidence, Rhode Island :American Mathematical Society,[1999]©19991 online resource (138 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 675"November 1999, volume 142, number 675 (first of 4 numbers)."0-8218-1340-4 Includes bibliographical references.""Contents""; ""Chapter 1. Introduction""; ""1. Statement of results""; ""2. Processes in Class A and stable mixtures""; ""3. Outline of remaining chapters""; ""Chapter 2. Wick products""; ""Chapter 3. Wick power chaos processes""; ""1. Definition""; ""2. Perturbations of Wick power chaoses""; ""Chapter 4. Isomorphism theorems""; ""1. Dynkin isomorphism theorem""; ""2. Isomorphisms for renormalized self-intersection local times""; ""Chapter 5. Equivalence of two versions of renormalized self-intersection local times""; ""1. The case n = 2""; ""2. The general case""; ""Chapter 6. Continuity""""Chapter 7. Stable mixtures""""Chapter 8. Examples""; ""Chapter 9. A large deviation result""; ""Appendix A. Necessary conditions""; ""Appendix B. The case n = 3""; ""1. The isomorphism theorem for n = 3""; ""2. L[sub(3)](Î?) = 6[sub(γ3)](Î?)""; ""Bibliography""Memoirs of the American Mathematical Society ;no. 675.Gaussian processesLocal times (Stochastic processes)Electronic books.Gaussian processes.Local times (Stochastic processes)510 s519.2/3Marcus Michael B.49046Rosen Jay1948-MiAaPQMiAaPQMiAaPQBOOK9910480597703321Renormalized self-intersection local times and Wick power chaos processes2262690UNINA