04527nam 2200649 450 991048029010332120170814182055.00-8218-8218-X(CKB)3240000000070062(EBL)3113301(SSID)ssj0000629268(PQKBManifestationID)11425381(PQKBTitleCode)TC0000629268(PQKBWorkID)10717932(PQKB)10612968(MiAaPQ)EBC3113301(PPN)197108687(EXLCZ)99324000000007006220101214h20112011 uy| 0engur|n|---|||||txtccrCombinatorics and physics Mini-Workshop on Renormalization, December 15-16, 2006, Max Planck Institut für Mathematik, Bonn, Germany : Conference on Combinatorics and Physics, March 19-23, 2007, Max Planck Institut für Mathematik, Bonn, Germany /Kurusch Ebrahimi-Fard, Matilde Marcolli, Walter D. van Suijlekom, editorsProvidence, Rhode Island :American Mathematical Society,[2011]©20111 online resource (480 p.)Contemporary mathematics ;volume 539Description based upon print version of record.0-8218-5329-5 Includes bibliographical references.""Contents""; ""Preface""; ""List of participants""; ""One-particle irreducibility with initial correlations""; ""Multiple zeta values and periods: From moduli spaces to Feynman integrals""; ""From quantum electrodynamics to posets of planar binary trees""; ""Sweedler's duals and Schutzenberger's calculus""; ""Primitive elements of the Hopf algebra of free quasi-symmetric functions""; ""A Renormalisation Group approach to Stochastic Loewner Evolutions""; ""On the causal gauge principle""; ""1. Introduction""; ""2. Overview of the CGI method""; ""3. The abelian model""; ""4. Three MVBs""""5. The Weinbergâ€?Salam model within CGI""""6. Discussion""; ""References""; ""Abstract integration, combinatorics of trees and differential equations""; ""Rooted trees appearing in products and co-products""; ""Magnus expansions and beyond""; ""Wilsonian renormalization, differential equations and Hopf algebras""; ""1. Introduction""; ""2. Basics of wilsonian renormalization""; ""3. Rooted trees and power series of non linear operators""; ""4. Renormalization, effective actions and Feynman diagrams""; ""5. Conclusion and outlook""; ""Acknowledgements""; ""References""""Algebraic analysis of non-renormalization theorems in supersymmetric field theories""""Not so non-renormalizable gravity""; ""Renormalised multiple zeta values which respect quasi-shuffle relations""; ""Formulas for the Connesâ€?Moscovici Hopf algebra""; ""Hopf algebras and the combinatorics of connected graphs in quantum field theory""; ""Hopf Algebras of Formal Diffeomorphisms and Numerical Integration on Manifolds""; ""A combinatorial and field theoretic path to quantum gravity: The new challenges of group field theory""""Noncommutative formal Taylor expansions and second quantised regularised traces""""Motives: An introductory survey for physicists""; ""1. Introduction""; ""2. The Grothendieck ring""; ""3. The Tannakian formalism""; ""4. Weil cohomology""; ""5. Classical motives""; ""6. Mixed motives""; ""7. Motivic measures and zeta functions""; ""Appendix A. Motivic ideas in physics (by M.Marcolli)""; ""References""; ""Combinatorics and Feynman graphs for gauge theories""; ""Multi-scale Analysis and Non-commutative Field Theory""Contemporary mathematics (American Mathematical Society) ;v. 539.Renormalization groupCongressesQuantum field theoryCongressesNumerical integrationCongressesElectronic books.Renormalization groupQuantum field theoryNumerical integration530.14/3Ebrahimi-Fard Kurusch1973-Marcolli MatildeSuijlekom Walter D. van.1978-Max-Planck-Institut für Mathematik,Conference on Combinatorics and Physics(2007 :Max Planck Institut für Mathematik),MiAaPQMiAaPQMiAaPQBOOK9910480290103321Combinatorics and physics763454UNINA