01256nam2 22002651i 450 SUN001839120160226112158.8588-14-10749-10.0020040623d2004 |0itac50 baitaIT|||| |||||1: Le *categorie generali del danno alla persona verso nuovi profili disciplinari, tutele emergenti della personaa cura di Paolo Cendoncon la collaborazione di Enrico PasquinelliMilanoGiuffrèc2004XLVII, 1067 p.24 cm.001SUN00183862001 *Persona e dannoa cura di Paolo Cendoncon la collaborazione di Enrico Pasquinelli1210 MilanoGiuffrè215 volumi24 cm.MilanoSUNL000284Cendon, PaoloSUNV000410Pasquinelli, EnricoSUNV014418GiuffrèSUNV001757650ITSOL20181231RICASUN0018391UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA00CONS XV.D.48 (1) 00 26023 20040623 Categorie generali del danno alla persona, verso nuovi profili disciplinari, tutele emergenti della persona951467UNICAMPANIA03448nam 2200589 450 991048023260332120170822144212.01-4704-0625-X(CKB)3360000000465192(EBL)3114247(SSID)ssj0000889164(PQKBManifestationID)11452888(PQKBTitleCode)TC0000889164(PQKBWorkID)10881944(PQKB)11101893(MiAaPQ)EBC3114247(PPN)195418972(EXLCZ)99336000000046519220150416h20112011 uy 0engur|n|---|||||txtccrQuasi-actions on trees II finite depth Bass-Serre trees /Lee Mosher, Michah Sageev, Kevin WhyteProvidence, Rhode Island :American Mathematical Society,2011.©20111 online resource (105 p.)Memoirs of the American Mathematical Society,0065-9266 ;Number 1008"November 2011, volume 214, number 1008 (fourth of 5 numbers)."0-8218-4712-0 Includes bibliographical references and index.""Contents""; ""Chapter 1. Introduction""; ""1.1. Example applications""; ""1.2. The methods of proof: a special case""; ""1.3. The general setting""; ""1.4. Statements of results""; ""1.5. Structure of the paper""; ""Chapter 2. Preliminaries""; ""2.1. Coarse language""; ""2.2. Coarse properties of subgroups""; ""2.3. Coboundedness principle""; ""2.4. Bass-Serre trees and Bass-Serre complexes""; ""2.5. Irreducible graphs of groups""; ""2.6. Coarse PD(n) spaces and groups""; ""2.7. The methods of proof: the general case""; ""Chapter 3. Depth Zero Vertex Rigidity""""3.1. A sufficient condition for depth zero vertex rigidity""""3.2. Proof of the Depth Zero Vertex Rigidity Theorem""; ""Chapter 4. Finite Depth Graphs of Groups""; ""4.1. Definitions and examples""; ""4.2. Proof of the Vertexâ€?Edge Rigidity Theorem 2.11""; ""4.3. Reduction of finite depth graphs of groups""; ""Chapter 5. Tree Rigidity""; ""5.1. Examples and motivations""; ""5.2. Outline of the Tree Rigidity Theorem""; ""5.3. Special case: isolated edge spaces""; ""5.4. Special case: all edges have depth one""; ""5.4.1. Proof of Lemma 5.5: an action on a 2-complex""""5.4.2. Proof of the Tracks Theorem 5.7""""5.5. Proof of the Tree Rigidity Theorem""; ""Chapter 6. Main Theorems""; ""Chapter 7. Applications and Examples""; ""7.1. Patterns of edge spaces in a vertex space""; ""7.2. Hn vertex groups and Z edge groups""; ""7.3. H3 vertex groups and surface fiber edge groups""; ""7.4. Surface vertex groups and cyclic edge groups""; ""7.5. Graphs of abelian groups""; ""7.6. Quasi-isometry groups and classification""; ""Bibliography""; ""Index""Memoirs of the American Mathematical Society ;Number 1008.Geometric group theoryRigidity (Geometry)Electronic books.Geometric group theory.Rigidity (Geometry)512/.2Mosher Lee1957-861448Sageev Michah1966-Whyte Kevin1970-MiAaPQMiAaPQMiAaPQBOOK9910480232603321Quasi-actions on trees II1922518UNINA