03900nam 2200625 450 991048009620332120170822144228.01-4704-0597-0(CKB)3360000000465167(EBL)3114237(SSID)ssj0000973338(PQKBManifestationID)11552365(PQKBTitleCode)TC0000973338(PQKBWorkID)10960287(PQKB)10269888(MiAaPQ)EBC3114237(PPN)195418727(EXLCZ)99336000000046516720150416h20102010 uy 0engur|n|---|||||txtccrMetrics of positive scalar curvature and generalised Morse functionsPart I /Mark WalshProvidence, Rhode Island :American Mathematical Society,2010.©20101 online resource (80 p.)Memoirs of the American Mathematical Society,0065-9266 ;Number 983"Volume 209, number 983 (second of 5 numbers)."0-8218-5304-X Includes bibliographical references.""Contents""; ""Abstract""; ""Introduction""; ""0.1. Background""; ""0.2. Main results""; ""0.3. The connection with generalised Morse functions and Part II""; ""0.4. Acknowledgements""; ""Chapter 1. Definitions and Preliminary Results""; ""1.1. Isotopy and concordance in the space of metrics of positive scalar curvature""; ""1.2. Warped product metrics on the sphere""; ""1.3. Torpedo metrics on the disk""; ""1.4. Doubly warped products and mixed torpedo metrics""; ""1.5. Inducing a mixed torpedo metric with an embedding""; ""Chapter 2. Revisiting the Surgery Theorem""""2.1. Surgery and cobordism""""2.2. Surgery and positive scalar curvature""; ""2.3. Outline of the proof of Theorem 2.3""; ""2.4. Part 1 of the proof: Curvature formulae for the first deformation""; ""2.5. Part 2 of the proof: A continuous bending argument""; ""2.6. Part 3 of the proof: Isotoping to a standard product""; ""2.7. Applying Theorem 2.3 over a compact family of psc-metrics""; ""2.8. The proof of Theorem 2.2 (The Improved Surgery Theorem)""; ""Chapter 3. Constructing Gromov-Lawson Cobordisms""; ""3.1. Morse Theory and admissible Morse functions""""3.2. A reverse Gromov-Lawson cobordism""""3.3. Continuous families of Morse functions""; ""Chapter 4. Constructing Gromov-Lawson Concordances""; ""4.1. Applying the Gromov-Lawson technique over a pair of cancelling surgeries""; ""4.2. Cancelling Morse critical points: The Weak and Strong Cancellation Theorems""; ""4.3. A strengthening of Theorem 4.2""; ""4.4. Standardising the embedding of the second surgery sphere""; ""Chapter 5. Gromov-Lawson Concordance Implies Isotopy for Cancelling Surgeries""; ""5.1. Connected sums of psc-metrics""""5.2. An analysis of the metric g'', obtained from the second surgery""""5.3. The proof of Theorem 5.1""; ""Chapter 6. Gromov-Lawson Concordance Implies Isotopy in the General Case""; ""6.1. A weaker version of Theorem 0.8""; ""6.2. The proof of the main theorem""; ""Appendix: Curvature Calculations from the Surgery Theorem""; ""Bibliography""Memoirs of the American Mathematical Society ;Number 983.CurvatureMorse theoryRiemannian manifoldsAlgebraic topologyElectronic books.Curvature.Morse theory.Riemannian manifolds.Algebraic topology.516.3/62 Walsh Mark 894369MiAaPQMiAaPQMiAaPQBOOK9910480096203321Metrics of positive scalar curvature and generalised Morse functions1997902UNINA00892nam a2200241 i 450099100194540970753620020507154249.0991025s1991 de ||| | ger 3811485903b11587040-39ule_instLE02727862ExLDip.to Studi GiuridiciitaNorr, Dieter398624Die Fides im römischen Völkerrecht /von Dieter NörrHeidelberg :Müller Jur. Verlag,1991vii, 62 p.Schriftenreihe Juristische Studiengesellschaft Karlsruhe ;191.b1158704001-03-1702-07-02991001945409707536LE027 ARCHI M 9281LE027-5800le027-E0.00-l- 00000.i1179603002-07-02Fides im römischen Völkerrecht754552UNISALENTOle02701-01-99ma -gerde 4100819nam a2200229 u 450099100426773810753620230316170356.0230316s1976 it a r 001 0 ita dBibl. Interfacoltà T. Pellegrinoitaita794Barcza, Gedeon1360094La sfida Lasker-Tarrasch, 1908, per il campionato mondiale :studio di due stili /prefazione del conte Gian Carlo Dal VermeEd. riveduta dall' AutoreMilano :L'Italia scacchistica ,196787 p. :ill. ;21 cm.Trad. T. FlorianPartite a scacchiSfida Lasker-TarraschFlorian, Tibor991004267738107536Sfida Lasker-Tarrasch, 1908, per il campionato mondiale3376078UNISALENTO