02658nam 2200589 450 991047889300332120180731045130.01-4704-0660-8(CKB)3360000000464437(EBL)3113482(SSID)ssj0000973348(PQKBManifestationID)11537970(PQKBTitleCode)TC0000973348(PQKBWorkID)10959875(PQKB)11422017(MiAaPQ)EBC3113482(PPN)195411366(EXLCZ)99336000000046443719810911h19811981 uy| 0engur|n|---|||||txtccrContinuous cohomology of the Lie algebra of vector fields /Toru TsujishitaProvidence, Rhode Island :American Mathematical Society,[1981]©19811 online resource (160 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 253Description based upon print version of record.0-8218-2253-5 Includes bibliographical references.""Section 3. Lie algebra cohomology""""3.1. Definitions""; ""3.2. Differential graded modules with Lie algebra actions""; ""3.3. Cohomology of L[sub(0)]""; ""3.4. Weil algebras""; ""Section 4. Frame bundles of manifolds""; ""4.1. Group of formal diffeomorphisms""; ""4.2. Frame bundles""; ""Section 5. Statements of the main results""; ""5.1. The fundamental theorem""; ""5.2. Topological interpretation of H(L[sub(M)], F[sub(M)])""; ""5.3. Compact support coefficients""; ""5.4. Distribution coefficients""; ""5.5. The case of L[sup(c)][sub(M)]""; ""Section 6. Diagonal cohomologies""""6.1. Guillemin-Losik Theorem""""6.2. A strong form of Guillemin-Losik Theorem""; ""6.3. Losik Theorem""; ""6.4. Distribution coefficients""; ""Section 7. Haefliger Theorem""; ""Section 8. Proof of Theorem I""; ""Section 9. Proof of Theorem II""; ""Section 10. Proof of Theorem(1.3.1)""; ""References""Memoirs of the American Mathematical Society ;no. 253.Vector fieldsLie algebrasHomology theoryElectronic books.Vector fields.Lie algebras.Homology theory.510 s512/.55Tsujishita Tōru1950-904387MiAaPQMiAaPQMiAaPQBOOK9910478893003321Continuous cohomology of the Lie algebra of vector fields2022158UNINA