03313nam 2200469 450 991046693620332120201110123614.0(CKB)3820000000020454(EBL)4498599(MiAaPQ)EBC4498599(Au-PeEL)EBL4498599(CaPaEBR)ebr11203769(OCoLC)948395231(EXLCZ)99382000000002045420201110d2012 uy 0chiur|n|---|||||txtrdacontentcrdamediacrrdacarrierThe Communist Party of China and China's Development /Zhang BaijiaChinese edition.Beijing, China :China Intercontinental Press,2012.1 online resource (117 p.)Chinese Communist Party SeriesDescription based upon print version of record.7-5085-2335-0 中国共产党与中国的发展 步 中国共产党系列 中文版 ; 扉 ; 版权 ; 目录; 壹 实现民族独立和人民 放; 代中国的民族危机与 命 动的兴 ; 克思列宁主义的传播与中国共产党的创立; 掀 "打倒列强 军 "的国民 命; 开 武 斗争和农村包围城市的 命 ; 组织民众抗击日本侵略 ; 建立中华人民共和国; 建立社会主义制度开展大 模建 ; 巩固新政权与恢复国民经济; 推 土地改 与社会 新; 变 后的农业国为先 的工业国的初步努力; 建立社会主义基本政治制度; 人民代 大会制度的建立; 多党合作和政治协商制度的形成与发展 ; 民族区域 治制度的建立; 实 独立 主的和平外交政策; 探索中国社会主义建 和经济建 的初步成就; 叁 上建 中国特 社会主义的 ; 共和国历史上的伟大 折; 伟大 折的实现; 经济和政治 域的 大变化; 改 开放与确立社会主义市场经济体制; 改 先在农村取得突破 ; 城市经济体制改 的启动和全 展开 ; 从创办经济特区到全 对外开放 ; 初步建立社会主义市场经济体制; 政治体制改 与民主法制建 ; 政治体制改 的启动和目标的确定; 健全和完善基本政治制度; 实 基层 治与扩大基层民主; 步实现依法治国; 政府机构改 ; 宗教信仰 由政策; 开创外交新局 ; 独立 主的和平外交政策; 睦 外交; 与大国和发展中国家关系多 外交建 现代化国 ; 指导思想的战略性 变; 国 安全合作; 推动国家统一 程 ; "一国两制"构想的提出; 港和澳 的回归; 两岸关系的变化; 全 建 小康社会与构建社会主义和 社会; 全 建 小康社会; 科学发展 统筹兼 ; 科技、教 、文化 域的改 与发展; 构建社会主义和 社会; 封底History of the CPC in revolution, socialist construction and reform and opening up, its major decisions and great contribution.Political partiesElectronic books.Political parties.324.251075Zhang Baijia1948-985501MiAaPQMiAaPQMiAaPQBOOK9910466936203321The Communist Party of China and China's Development2252649UNINA05251nam 2200625Ia 450 991046280210332120200520144314.0981-4412-52-X(CKB)2670000000361827(EBL)1193426(SSID)ssj0000950915(PQKBManifestationID)11529078(PQKBTitleCode)TC0000950915(PQKBWorkID)10881425(PQKB)11603865(MiAaPQ)EBC1193426(PPN)189428279(Au-PeEL)EBL1193426(CaPaEBR)ebr10700616(CaONFJC)MIL486883(OCoLC)843871633(EXLCZ)99267000000036182720130419n2013 uy 0engur|n|---|||||txtccrUndergraduate convexity[electronic resource] from Fourier and Motzkin to Kuhn and Tucker /Niels LauritzenSingapore World Scientific20131 online resource (300 p.)Description based upon print version of record.981-4412-51-1 Includes bibliographical references and index.Preface; Acknowledgments; Contents; 1. Fourier-Motzkin elimination; 1.1 Linear inequalities; 1.2 Linear optimization using elimination; 1.3 Polyhedra; 1.4 Exercises; 2. Affine subspaces; 2.1 Definition and basics; 2.2 The affine hull; 2.3 Affine subspaces and subspaces; 2.4 Affine independence and the dimension of a subset; 2.5 Exercises; 3. Convex subsets; 3.1 Basics; Minkowski sum, dilation and the polar of a subset; 3.2 The convex hull; 3.3 Faces of convex subsets; Interlude: Integral points in convex subsets; 3.4 Convex cones; The recession cone; Finitely generated cones3.5 Carathéodory's theorem3.6 The convex hull, simplicial subsets and Bland's rule; Non-cycling; 3.7 Exercises; 4. Polyhedra; 4.1 Faces of polyhedra; 4.2 Extreme points and linear optimization; 4.3 Weyl's theorem; 4.4 Farkas's lemma; 4.5 Three applications of Farkas's lemma; 4.5.1 Markov chains and steady states; 4.5.2 Gordan's theorem; 4.5.3 Duality in linear programming; 4.6 Minkowski's theorem; 4.7 Parametrization of polyhedra; 4.8 Doubly stochastic matrices: The Birkhoff polytope; 4.8.1 Perfect pairings and doubly stochastic matrices; 4.9 Exercises; 5. Computations with polyhedra5.1 Extreme rays and minimal generators in convex cones5.2 Minimal generators of a polyhedral cone; 5.3 The double description method; 5.3.1 Converting from half space to vertex representation; 5.3.2 Converting from vertex to half space representation; 5.3.3 Computing the convex hull; 5.4 Linear programming and the simplex algorithm; 5.4.1 Two examples of linear programs; 5.4.2 The simplex algorithm in a special case; 5.4.3 The simplex algorithm for polyhedra in general form; 5.4.4 The simplicial hack; 5.4.5 The computational miracle of the simplex tableau; The simplex algorithmExplaining the steps5.4.6 Computing a vertex in a polyhedron; 5.5 Exercises; 6. Closed convex subsets and separating hyperplanes; 6.1 Closed convex subsets; 6.2 Supporting hyperplanes; 6.3 Separation by hyperplanes; 6.4 Exercises; 7. Convex functions; 7.1 Basics; 7.2 Jensen's inequality; 7.3 Minima of convex functions; 7.4 Convex functions of one variable; 7.5 Differentiable functions of one variable; 7.5.1 The Newton-Raphson method for finding roots; 7.5.2 Critical points and extrema; 7.6 Taylor polynomials; 7.7 Differentiable convex functions; 7.8 Exercises8. Differentiable functions of several variables8.1 Differentiability; 8.1.1 The Newton-Raphson method for several variables; 8.1.2 Local extrema for functions of several variables; 8.2 The chain rule; 8.3 Lagrange multipliers; The two variable case; The general case and the Lagrangian; 8.4 The arithmetic-geometric inequality revisited; 8.5 Exercises; 9. Convex functions of several variables; 9.1 Subgradients; 9.2 Convexity and the Hessian; 9.3 Positive definite and positive semidefinite matrices; 9.4 Principal minors and definite matrices; 9.5 The positive semidefinite cone9.6 Reduction of symmetric matricesBased on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples.Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algoriConvex domainsAlgebras, linearElectronic books.Convex domains.Algebras, linear.515.88Lauritzen Niels1964-951084MiAaPQMiAaPQMiAaPQBOOK9910462802103321Undergraduate convexity2150122UNINA