03001nam0 22004813i 450 BVEE04853720170908093225.0b-in em2. isum imni (3) 1698 (R)fei20130822d1698 ||||0itac50 balatfrz01i xxxe z01nDe nova quaestione tractatus tres. 1. Mystici in tuto. 2. Schola in tuto. 3. Quietismus redivivus. Auctore Jacobo Benigno Bossuet episcopo Meldensi, ...Parisiisapud Johannem Anisson typographiae regiae directorem, viâ Cytharaea, sub Lilio Florentino1698[28], 440, [8] p.8ºMarca non controllata (Giglio) sui frontSegn.: ā⁸ ē⁴, ²ā² A-2E⁸"Mystici in tuto" inizia con proprio front. a c. ²ā1r, "Schola in tuto" e "Quietismus redivivus" iniziano rispettivamente con proprio occhietto alle c. H4 e V5Var.B: [28], 117, [4], 122-440, [8] p. con segn.: ā⁸ ē⁴. ²ā² A-G⁸ H⁴ *H⁴ I-T⁸ V⁴ *V⁴ X-2E⁸La c. *H1 biancaLa c. *V1 contiene l'occhietto col tit.: Quietismus redivivus.1 v. (Sul front. timbro rosso RB)IT-NA0079, V.F. 8 C 372001 Mystici in tuto: sive de S. Theresiâ, de B. Johanne à Cruce, aliisque piis mysticis vindicandis. ...700 1Bossuet, Jacques BénigneCFIV013273070ParigiTO0L002626Bossuet, Jacques BénigneCFIV013273070396699Anisson, JeanUFIV122758650Bossuet, Giacomo BenignoCAMV000323Bossuet, Jacques BénigneBossuet, Jacopo BenignoPUVV170636Bossuet, Jacques BénigneBossuet, James BenignSBNV028047Bossuet, Jacques BénigneBossuet, BenigneSBNV028048Bossuet, Jacques BénigneAnisson, JoannesCFIV314606Anisson, Jean˜A la œFleur de Lis de FlorenceUBOV127883Anisson, JeanITIT-NA007920130822IT-NA0079Biblioteca Nazionale Vittorio Emanuele IIINA00791 esemplareShttp://books.google.com/books?vid=IBNN:BN000620650BVEE048537SBNM000001Marca non controllataS2Sui front.Biblioteca Nazionale Vittorio Emanuele III1 v. BNV.F. 8 C 37 BN 0006206505G B 1 v. (Sul front. timbro rosso RB)C 2013082220130822Sul front. timbro rosso RBTimbri storici della biblioteca proprietariaBiblioteca Nazionale Vittorio Emanuele III1 BN 000620650http://books.google.com/books?vid=IBNN:BN000620650 BNV.F. 8 C 37 BNDe nova quaestione tractatus tres. 1. Mystici in tuto. 2. Schola in tuto. 3. Quietismus redivivus. Auctore Jacobo Benigno Bossuet episcopo Meldensi, ..1481868UNISANNIO03085nam 22004573u 450 991046487540332120210114095621.0(CKB)3710000000085963(EBL)1561564(OCoLC)869281847(MiAaPQ)EBC1561564(EXLCZ)99371000000008596320140421d2014|||| u|| |engur|n|---|||||Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188)[electronic resource]Princeton Princeton University Press20141 online resource (206 p.)Annals of Mathematics StudiesDescription based upon print version of record.0-691-16078-3 Cover; Title; Copyright; Dedication; Contents; Preface; 1 A review: The Laplacian and the d'Alembertian; 1.1 The Laplacian; 1.2 Fundamental solutions of the d'Alembertian; 2 Geodesics and the Hadamard parametrix; 2.1 Laplace-Beltrami operators; 2.2 Some elliptic regularity estimates; 2.3 Geodesics and normal coordinates-a brief review; 2.4 The Hadamard parametrix; 3 The sharp Weyl formula; 3.1 Eigenfunction expansions; 3.2 Sup-norm estimates for eigenfunctions and spectral clusters; 3.3 Spectral asymptotics: The sharp Weyl formula; 3.4 Sharpness: Spherical harmonics3.5 Improved results: The torus3.6 Further improvements: Manifolds with nonpositive curvature; 4 Stationary phase and microlocal analysis; 4.1 The method of stationary phase; 4.2 Pseudodifferential operators; 4.3 Propagation of singularities and Egorov's theorem; 4.4 The Friedrichs quantization; 5 Improved spectral asymptotics and periodic geodesics; 5.1 Periodic geodesics and trace regularity; 5.2 Trace estimates; 5.3 The Duistermaat-Guillemin theorem; 5.4 Geodesic loops and improved sup-norm estimates; 6 Classical and quantum ergodicity; 6.1 Classical ergodicity; 6.2 Quantum ergodicity Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the fiAnnals of Mathematics StudiesEigenfunctionsLaplacian operatorElectronic books.Eigenfunctions.Laplacian operator.515515.3533515/.3533Sogge Christopher D524956AU-PeELAU-PeELAU-PeELBOOK9910464875403321Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188)1937575UNINA