04836nam 2200673Ia 450 991046320440332120200520144314.01-283-94152-X0-12-394615-8(CKB)2670000000328965(EBL)1108498(OCoLC)823718929(SSID)ssj0000804864(PQKBManifestationID)11956261(PQKBTitleCode)TC0000804864(PQKBWorkID)10815401(PQKB)11649633(MiAaPQ)EBC1108498(PPN)17060411X(Au-PeEL)EBL1108498(CaPaEBR)ebr10643949(CaONFJC)MIL425402(OCoLC)860497576(EXLCZ)99267000000032896520120726d2013 uy 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierSpace groups for solid state scientists[electronic resource] /Michael Glazer, Gerald Burns3rd ed.Amsterdam ;Boston Elsevierc20131 online resource (423 p.)Previous ed. by Gerald Burns.0-12-394400-7 Includes bibliographical references and index.Front Cover; Space Groups for Solid State Scientists; Copyright; Contents; Preface; Chapter 1 Point Symmetry Operations; WHAT IS SYMMETRY?; 1.1. SYMMETRY OPERATIONS; 1.2. POINT SYMMETRY OPERATIONS; 1.3. HEXAGONAL COORDINATES; Chapter 2 Crystal Systems; HAÜY'S LEGACY; 2.1. LATTICE; 2.2. UNIT CELL; 2.3. CRYSTAL STRUCTURE; 2.4. CRYSTAL SYSTEMS; 2.5. SUMMARY; Chapter 3 Bravais Lattices; SYMMETRY AND LATTICES; 3.1. CENTERING OF LATTICES; 3.2. THE 14 BRAVAIS LATTICES; 3.3. PRIMITIVE CELLS OF THE 14 BRAVAIS LATTICES; 3.4. THE WIGNER-SEITZ UNIT CELL; 3.5. TWO-DIMENSIONAL LATTICESChapter 4 Crystallographic Point GroupsINTRODUCTION TO GROUPS; 4.1. DEVELOPMENT OF CRYSTALLOGRAPHIC POINT GROUPS; 4.2. THE POINT GROUPS FOR EACH CRYSTAL SYSTEM; 4.3. THE 32 POINT GROUPS FROM HOLOHEDRIES; 4.4. LAUE CLASSES AND GROUPS; 4.5. POINT GROUP NOTATION; Chapter 5 Development of Space Groups; SPACE GROUP OPERATORS; 5.1. THE SYMMORPHIC SPACE GROUPS; 5.2. NON-SYMMORPHIC OPERATIONS; 5.3. POINT GROUP OF A SPACE GROUP; 5.4. SPACE GROUPS; 5.5. DERIVATION OF SPACE GROUPS; 5.6. SPACE GROUP CLASSIFICATIONS; 5.7. TWO-DIMENSIONAL SPACE GROUPS; 5.8. SUBPERIODIC GROUPS; Chapter 6 Reading the TablesWHAT DOES THE ITA TELL US?6.1. CRYSTAL STRUCTURE AND SPACE GROUPS; 6.2. 'TYPICAL' PAGES OF THE ITA; 6.3. EXAMPLE PAGES FROM THE ITA; 6.4. SUBGROUPS AND SUPERGROUPS4; 6.5. SPACE GROUP SYMMETRY OPERATIONS; 6.6. HALL SPACE GROUP SYMBOLS; Chapter 7 Space Group Applications; AND NOW ATOMS; 7.1. FACE-CENTERED CUBIC STRUCTURES; 7.2. PRIMITIVE CUBIC STRUCTURES; 7.3. BODY-CENTERED CUBIC STRUCTURES; 7.4. DIAMOND STRUCTURE; 7.5. SPINEL STRUCTURE; 7.6. ZINC SULPHIDE STRUCTURE; 7.7. CHALCOPYRITE; 7.8. SEMICONDUCTOR SUPERLATTICES; 7.9. STRUCTURAL PHASE TRANSITIONS IN CRYSTALS; 7.10. DISPLACIVE SPTS8.5. BLACK AND WHITE SPACE GROUPS8.6. MAGNETIC SPACE GROUPS; 8.7. EXAMPLES OF MAGNETIC STRUCTURES; 8.8. REPRESENTATION METHOD; 8.9. OG/BNS MAGNETIC GROUP SYMBOLS; Appendix 1 Matrices Representing the Symmetry Operations; JONES' FAITHFUL REPRESENTATION SYMBOLS; Appendix 2 Crystal Families, Systems, and Bravais Lattices; Appendix 3 The 14 Bravais Lattices; 24 WIGNER-SEITZ CELLS; Appendix 4 The 32 Crystallographic Point Groups; Appendix 5 Diagrams for the 32 Point Groups; STEREOGRAMS; SOME SHAPES ILLUSTRATING THE 32 POINT GROUPS; Appendix 6 Symbols; SYMBOLS OF SYMMETRY PLANESSYMBOLS OF SYMMETRY AXESThis comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as ""extremely useful"" by MATHEMATICAL REVIEWS and as ""understandable and comprehensive"" by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus, most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables themselves. This remains the only book aimed at non-crystallographers devoted to teaching them about crystalloSolid state physicsSpace groupsElectronic books.Solid state physics.Space groups.530.4/1530.4/1Glazer A. M(Anthony Michael)958693Burns Gerald1932-463939MiAaPQMiAaPQMiAaPQBOOK9910463204403321Space groups for solid state scientists2172312UNINA