04464nam 2200613Ia 450 991046297710332120200520144314.01-908977-10-8(CKB)2670000000360001(EBL)1193530(OCoLC)844311083(SSID)ssj0000981126(PQKBManifestationID)12398263(PQKBTitleCode)TC0000981126(PQKBWorkID)10968986(PQKB)11217403(MiAaPQ)EBC1193530(WSP)00003005(Au-PeEL)EBL1193530(CaPaEBR)ebr10700570(CaONFJC)MIL486889(EXLCZ)99267000000036000119950605d2013 uy 0engur|n|---|||||txtccrLocal activity principle[electronic resource] /Klaus Mainzer and Leon ChuaLondon Imperial College Pressc20131 online resource (456 p.)Description based upon print version of record.1-908977-09-4 Includes bibliographical references and index.Contents; Preface; 1. The Local Activity Principle and the Emergence of Complexity; 1.1 Mathematical Definition of Local Activity; 1.2 The Local Activity Theorem; 1.3 Local Activity is the Origin of Complexity; 2. Local Activity and Edge of Chaos in Computer Visualization; 2.1 Local Activity and Edge of Chaos of the Brusselator Equations; 2.2 Local Activity and Edge of Chaos of the Gierer-Meinhardt Equations; 2.3 Local Activity and Edge of Chaos of the FitzHugh-Nagumo Equations; 2.4 Local Activity and Edge of Chaos of the Hodgkin-Huxley Equations2.5 Local Activity and Edge of Chaos of the Oregonator Equations3. The Local Activity Principle and the Expansion of the Universe; 3.1 Mathematical Definition of Symmetry; 3.2 Symmetries in the Quantum World; 3.3 Global and Local Symmetries; 3.4 Local Gauge Symmetries and Symmetry Breaking; 4. The Local Activity Principle and the Dynamics of Matter; 4.1 The Local Activity Principle of Pattern Formation; 4.2 The Local Activity Principle and Prigogine's Dissipative Structures; 4.3 The Local Activity Principle and Haken's Synergetics; 5. The Local Activity Principle and the Evolution of Life5.1 The Local Activity Principle of Turing's Morphogenesis5.2 The Local Activity Principle in Systems Biology; 5.3 The Local Activity Principle in Brain Research; 6. The Local Activity Principle and the Co-evolution of Technology; 6.1 The Local Activity Principle of Cellular Automata; 6.2 The Local Activity Principle of Neural Networks; 6.3 The Local Activity Principle of Memristors; 6.4 The Local Activity Principle of Global Information Networks; 7. The Local Activity Principle and Innovation in the Economy and Society; 7.1 The Local Activity Principle in Sociodynamics7.2 The Local Activity Principle and Emerging Risks7.3 The Local Activity Principle in Financial Dynamics; 7.4 The Local Activity Principle in Innovation Dynamics; 7.5 The Local Activity Principle of Sustainable Entrepreneurship; 8. The Message of the Local Activity Principle; 8.1 The Local Activity Principle in Culture and Philosophy; 8.2 What can we Learn from the Local Activity Principle in the Age of Globalization?; References; Author Index; Subject IndexThe principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that Mathematical physicsPhysicsElectronic books.Mathematical physics.Physics.515.9Mainzer Klaus45836Chua Leon O.1936-459925MiAaPQMiAaPQMiAaPQBOOK9910462977103321Local activity principle2253857UNINA