00925nam0-22003011i-450-99000657177040332120001010000657177FED01000657177(Aleph)000657177FED0100065717720001010d--------km-y0itay50------baitay-------001yyAlcune osservazioni su autonomia regiona le e programmazione economicadi Antonio Augusto RomanoPalermoMontaina196739 p., 22 cm"Estratto da: Il Circolo Giuridco Sampolo, Anno 1967"353.9Romano,Antonio Augusto238893ITUNINARICAUNIMARCBK990006571770403321BUSTA I D 1077836FSPBCFSPBCAlcune osservazioni su autonomia regiona le e programmazione economica623715UNINAGEN0105383nam 2200637Ia 450 991046284940332120200520144314.0981-4452-33-5(CKB)2670000000361841(EBL)1193700(OCoLC)843871618(SSID)ssj0000908118(PQKBManifestationID)12361244(PQKBTitleCode)TC0000908118(PQKBWorkID)10900964(PQKB)11061937(MiAaPQ)EBC1193700(WSP)00002989(PPN)189428376(Au-PeEL)EBL1193700(CaPaEBR)ebr10700619(CaONFJC)MIL486891(EXLCZ)99267000000036184120130419n2013 uy 0engur|n|---|||||txtccrOblique derivative problems for elliptic equations[electronic resource] /Gary M LiebermanSingapore World Scientific20131 online resource (528 p.)Description based upon print version of record.981-4452-32-7 Includes bibliographical references and index.Preface; Contents; 1. Pointwise Estimates; Introduction; 1.1 The maximum principle; 1.2 The definition of obliqueness; 1.3 The case c < 0, 0 0; 1.4 A generalized change of variables formula; 1.5 The Aleksandrov-Bakel'man-Pucci maximum principles; 1.6 The interior weak Harnack inequality; 1.7 The weak Harnack inequality at the boundary; 1.8 The strong maximum principle and uniqueness; 1.9 Holder continuity; 1.10 The local maximum principle; 1.11 Pointwise estimates for solutions of mixed boundary value problems; 1.12 Derivative bounds for solutions of elliptic equations; Exercises2. Classical Schauder Theory from a Modern PerspectiveIntroduction; 2.1 Definitions and properties of Holder spaces; 2.2 An alternative characterization of Holder spaces; 2.3 An existence result; 2.4 Basic interior estimates; 2.5 The Perron process for the Dirichlet problem; 2.6 A model mixed boundary value problem; 2.7 Domains with curved boundary; 2.8 Fredholm-Riesz-Schauder theory; Notes; Exercises; 3. The Miller Barrier and Some Supersolutions for Oblique Derivative Problems; Introduction; 3.1 Theory of ordinary differential equations; 3.2 The Miller barrier construction3.3 Construction of supersolutions for Dirichlet data3.4 Construction of a supersolution for oblique derivative problems; 3.5 The strong maximum principle, revisited; 3.6 A Miller barrier for mixed boundary value problems; Notes; Exercises; 4. Holder Estimates for First and Second Derivatives; Introduction; 4.1 C1, estimates for continuous; 4.2 Regularized distance; 4.3 Existence of solutions for continuous; 4.4 Holder gradient estimates for the Dirichlet problem; 4.5 C1, estimates with discontinuous in two dimensions; 4.6 C1, estimates for discontinuous in higher dimensions4.7 C2, estimatesNotes; Exercises; 5. Weak Solutions; Introduction; 5.1 Definitions and basic properties of weak derivatives; 5.2 Sobolev imbedding theorems; 5.3 Poincare's inequality; 5.4 The weak maximum principle; 5.5 Trace theorems; 5.6 Existence of weak solutions; 5.7 Higher regularity of solutions; 5.8 Global boundedness of weak solutions; 5.9 The local maximum principle; 5.10 The DeGiorgi class; 5.11 Membership of supersolutions in the De Giorgi class; 5.12 Consequences of the local estimates; 5.13 Integral characterizations of Holder spaces; 5.14 Schauder estimates; Notes; Exercises6. Strong SolutionsIntroduction; 6.1 Pointwise estimates for strong solutions; 6.2 A sharp trace theorem; 6.3 Results from harmonic analysis; 6.4 Some further estimates for boundary value problems in a spherical cap; 6.5 Lp estimates for solutions of constant coefficient problems in a spherical cap; 6.6 Local estimates for strong solutions of constant coefficient problems; 6.7 Local interior Lp estimates for the second derivatives of strong solutions of differential equations; 6.8 Local Lp second derivative estimates near the boundary6.9 Existence of strong solutions for the oblique derivative problemThis book gives an up-to-date exposition on the theory of oblique derivative problems for elliptic equations. The modern analysis of shock reflection was made possible by the theory of oblique derivative problems developed by the author. Such problems also arise in many other physical situations such as the shape of a capillary surface and problems of optimal transportation. The author begins the book with basic results for linear oblique derivative problems and work through the theory for quasilinear and nonlinear problems. The final chapter discusses some of the applications. In addition, noDifferential equations, EllipticDifferential equations, PartialElectronic books.Differential equations, Elliptic.Differential equations, Partial.515.3533Lieberman Gary M.1952-57190MiAaPQMiAaPQMiAaPQBOOK9910462849403321Oblique derivative problems for elliptic equations255413UNINA01522nam0 22003253i 450 PUV100033820231121125621.0285274146620111209e19921909||||0itac50 bafrefrefrz01i xxxe z01n10: Le Codex 239 de la Bibliotheque de LaonRist. anastSolesmesAssociation Jean-Bougler199229, 7 p., 178 p. di tav., facs.29 cmPaléographie musicaleles principaux manuscrits de chant grègorien, ambrosien, mozarabe, gallican publiés en fac-similés phototypiques par les bénédictins de Solesmes10Riprod. facs. dell'ed. di Tournay del 1909.001PUV08310692001 Paléographie musicaleles principaux manuscrits de chant grègorien, ambrosien, mozarabe, gallican publiés en fac-similés phototypiques par les bénédictins de Solesmes10780.262Musica. Manoscritti21ITIT-0120111209IT-FR0084 IT-FR0017 Biblioteca Del Monumento Nazionale Di MontecassinoFR0084 Biblioteca umanistica Giorgio ApreaFR0017 NPUV1000338Biblioteca umanistica Giorgio Aprea 52LAB.SLA 780.262 Pr.Mns.10 52ATE0000079195 VMN RS C 2017050420170504 25 52Codex 239 de la Bibliotheque de Laon3614720UNICAS