02923nam 22006252 450 991046234970332120151005020622.01-316-08965-71-107-23958-31-283-61058-297866139230351-139-55087-X1-139-55583-91-139-54962-61-139-55458-11-139-55212-01-139-08443-7(CKB)2670000000240662(EBL)989115(OCoLC)810933088(SSID)ssj0000710805(PQKBManifestationID)11374697(PQKBTitleCode)TC0000710805(PQKBWorkID)10672904(PQKB)11440275(UkCbUP)CR9781139084437(MiAaPQ)EBC989115(Au-PeEL)EBL989115(CaPaEBR)ebr10602811(CaONFJC)MIL392303(EXLCZ)99267000000024066220110506d2012|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierClassical algebraic geometry a modern view /Igor V. Dolgachev[electronic resource]Cambridge :Cambridge University Press,2012.1 online resource (xii, 639 pages) digital, PDF file(s)Title from publisher's bibliographic system (viewed on 05 Oct 2015).1-107-47132-X 1-107-01765-3 Machine generated contents note: Preface; 1. Polarity; 2. Conics and quadrics; 3. Plane cubics; 4. Determinantal equations; 5. Theta characteristics; 6. Plane quartics; 7. Cremona transformations; 8. Del Pezzo surfaces; 9. Cubic surfaces; 10. Geometry of lines; Bibliography; Index.Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.Geometry, AlgebraicGeometry, Algebraic.516.3/5Dolgachev I(Igor V.),149516UkCbUPUkCbUPBOOK9910462349703321Classical algebraic geometry2473362UNINA